搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种采用双换能器和摆式结构的宽频振动能量采集器

代显智 刘小亚 陈蕾

引用本文:
Citation:

一种采用双换能器和摆式结构的宽频振动能量采集器

代显智, 刘小亚, 陈蕾

A broadband vibration energy harvester using double transducers and pendulum-type structures

Dai Xian-Zhi, Liu Xiao-Ya, Chen Lei
PDF
导出引用
  • 针对悬臂梁振动能量采集器在大振幅振动下梁容易断裂的缺点, 本文提出了一种基于摆式结构的具有宽频和倍频特性的振动能量采集器, 该采集器由两个Terfenol-D/PMN-PT/Terfenol-D磁电换能器和嵌有六个磁铁的旋转摆构成. 文中建立了摆式结构的摆动方程, 分析了采集器的频率响应特性以及谐振时的机-磁-电转换特性, 并对采集器输出电压波形进行了频谱分析. 理论和实验研究表明: 该采集器具有宽频和倍频特性, 采集器样机在1 g (1 g=9.8 m/s2)有效值加速度振动下, 向下扫频时的半功率带宽达到4.8 Hz, 且能在f=16.9 Hz的振动下获得3.569 mW的负载功率. 利用双换能器以及采集器的倍频和宽频特性, 能有效地提高低频时采集器的输出功率.
    As cantilever-based vibration energy harvesters are easily fractured under large amplitude vibration excitation, in this paper we present a vibration energy harvester based on a pendulum-type structure with broadband and frequency-doubling characteristics. The harvester consists of two Terfenol-D/PMN-PT/Terfenol-D magnetoelectric transducers and a rotary pendulum embedded with six magnets. These six magnets are arranged into an optimum configuration and can produce a concentrated flux gradient which makes the magnetoelectric transducers generate a high power. While the two transducers are used to further improve the output power and power density of the harvester without increasing the volume of the harvester. The rotary pendulum of the harvester changes linear vibration into a back-and-forth swing of the rotary pendulum. When the rotary pendulum swings, the stress is hardly generated in the interior of the rotary pendulum. Therefore the rotary pendulum is not easily fractured under the large amplitude vibration. Therefore the proposed pendulum-based vibration energy harvester is suitable for scavenging the large amplitude ambient vibration energy. The swing equation of the rotary pendulum is established. The nonlinear dynamic equation of the rotary pendulum is solved by the Lindstedt-Poincar method. The frequency response characteristic and the mechano-magneto-electric transduction characteristic of the harvester at resonance are analyzed by combining the swing equation of the harvester with the magnetoelectric characteristics of the magnetoelectric transducers. The spectrum of the output voltage waveform of the harvester is discussed. The analytical and experimental results indicate that the harvester has broadband and frequency-doubling characteristics. The broadband characteristic of the harvester is derived from the nonlinear magnetic force between the magnets and magnetoelectric transducers. The voltage frequency-doubling characteristic is derived from the nonlinearity of the magnetic field produced by the magnets. It does not need frequency conversion mechanism for the proposed harvester, so the proposed harvester has some advantages, such as simple structure and easy manufacture. Under 1 g (1 g = 9.8 m/s2) RMS vibration acceleration excitation, the measured maximum RSM voltage and the resonant frequency of the prototype are 90.9 V and 16.9 Hz, respectively. The 3 dB bandwidth for the sweep-down condition is 4.8 Hz from 16.9 Hz to 21.7 Hz and that for the sweep-up condition is 2.1 Hz from 22.8 Hz to 24.9 Hz. Compared with other harvesters, the proposed harvester has a wide relative bandwidth. The load output power of the prototype reaches 3.569 mW across a 1.9 M optimal resistor at resonant frequency of 16.9 Hz with 1 g RMS vibration acceleration. The output RMS powers of the prototype across 1.9 M resistor are 0.156 mW, 0.6863 mW, 1.777 mW at 0.3 g, 0.5 g and 0.7 g with resonance, respectively. The proposed harvester can effectively improve the output powers at lower frequency vibrations for its two transducers, broadband and frequency-doubling characteristics.
      通信作者: 代显智, daixianzhi@sina.com
    • 基金项目: 国家自然科学基金(批准号: 61304255)、西华师范大学创新团队基金(批准号: CXTD2015-13)、西华师范大学基本科研业务费专项资金(批准号: 15C001)和重庆市基础科学与前沿技术研究专项资金(批准号: cstc2015jcyjBX0019)资助的课题.
      Corresponding author: Dai Xian-Zhi, daixianzhi@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61304255), the Innovative Research Team Foundation of China West Normal University (Grant No. CXTD2015-13), the Fundamental Research Funds of China West Normal University (Grant No. 15C001) and the Chongqing Research Program of Basic Research and Frontier Technology, China (Grant No. cstc2015jcyjBX0019).
    [1]

    Su W J, Zu J, Zhu Y 2014 J. Intel. Mat. Syst. Str. 25 430

    [2]

    Fan K Q, Xu C H, Wang W D, Fang Y 2014 Chin. Phys. B 23 084501

    [3]

    Huang P C, Tsai T H, Yang Y J 2013 Microelectron. Eng. 111 214

    [4]

    Dai X, Wen Y, Li P, Yang J, Li M 2011 Sensor Actuator. A: Phys. 166 94

    [5]

    Zhan Y Z, Wang G Q 2014 J.Vib. Eng. 27 871 (in Chinese) [展永政, 王光庆 2014 振动工程学报 27 871]

    [6]

    Wang G, Zhang W, Liu C, Yang B Q, Liao W X 2015 Chin. J. Sensor Actuat. 28 1494 (in Chinese) [王光庆, 张伟, 刘创, 杨斌强, 廖维新 2015 传感技术学报 28 1494]

    [7]

    Tan W, Wang X P, Cao J J 2014 Acta Phys. Sin. 63 240504 (in Chinese) [唐炜, 王小璞, 曹景军 2014 物理学报 63 240504]

    [8]

    Yang J, Wen Y, Li P, Dai X 2011 Sensor Actuator. A: Phys. 168 358

    [9]

    Bai X, Wen Y, Li P, Yang J, Peng X, Yue X 2014 Sensor Actuator. A: Phys. 209 78

    [10]

    Xu C, Liang Z, Ren B, Di W, Luo H, Wang D, Wang K, Chen Z 2013 J. Appl. Phys. 114 114507

    [11]

    Wang G Q, Zhan Y Z, Jin W P, Liao W X 2015 J. Mech. Eng. 51 155 (in Chinese) [王光庆, 展永政, 金文平, 廖维新 2015 机械工程学报 51 155]

    [12]

    Spreemann D, Manoli Y, Folkmer B, Mintenbeck D 2006 J. Micromech. Microeng. 16 S169

    [13]

    Ylli K, Hoffmann D, Willmann A, Folkmer B, Manoli Y 2015 J. Phys.: Conf. Ser. 660 012053

    [14]

    Wang Y J, Chen C D, Sung C K 2010 Sensor Actuator. A: Phys. 159 196

    [15]

    Malaji P V, Ali S F 2015 Eur. Phys. J. Spec. Top. 224 2823

    [16]

    Ma T W, Zhang H, Xu N S 2012 Mech. Syst. Signal Process. 28 323

    [17]

    Dai X 2016 Sensor Actuator. A: Phys. 241 161

    [18]

    Huang J K, OHandley R C, Bono D 2003 Proceedings of SPIE: Smart Structures and Materials California, USA, March 3-5, 2003 p229

    [19]

    Klah H, Najafi K 2008 IEEE Sens. J. 8 261

    [20]

    Liu H, Lee C, Kobayashi T, Tay C J, Quan C 2011 Procedia Eng. 25 725

    [21]

    Liu H, Lee C, Kobayashi T, Tay C J, Quan C 2012 Sensor Actuator. A: Phys. 186 242

    [22]

    zge Z, Klah H 2013 Sensor Actuator. A: Phys. 202 124

    [23]

    Tang Q, Yang Y, Li X 2014 Rev. Sci. Instrum. 84 1

    [24]

    Dong S, Li J, Viehland D 2003 IEEE T. Ultrason. Fekroelectr. Freq. Control 50 1253

    [25]

    Dai X Z, Wen Y M, Li P, Yang J, Jiang X F 2010 Acta Phys. Sin. 59 2137 (in Chinese) [代显智, 文玉梅, 李平, 杨进, 江小芳 2010 物理学报 59 2137]

    [26]

    Liu Y Z, Chen W L, Chen L Q 1998 Vibration Mechanics (Beijing: Higher Education Press) p45 (in Chinese) [刘延柱, 陈文良, 陈立群 1998 振动力学 (北京: 高等教育出版社) 第45页]

    [27]

    Dai X, Wen Y, Li P, Yang J, Zhang G 2009 Sensor Actuator. A: Phys. 156 350

    [28]

    Dai X, Zhang Z, Wang Y, Li J, Chen L 2014 J. Appl. Phys. 115 014104

    [29]

    Dai X Z 2014 Acta Phys. Sin. 63 207501 (in Chinese) [代显智 2014 物理学报 63 207501]

    [30]

    Xing X, Lou J, Yang G M, Obi O, Driscoll C, Sun N X 2009 Appl. Phys. Lett. 95 134103

    [31]

    Stanton S C, McGehee C C, Mann B P 2009 Appl. Phys. Lett. 95 174103

    [32]

    Ma H A, Liu J Q, Tang G, Yang C S, Li Y G 2011 Transd. Microsyst. Techn. 30 66 (in Chinese) [马华安, 刘景全, 唐刚, 杨春生, 李以贵 2011 传感器与微系统 30 66]

    [33]

    Bartsch U, Gaspar J, Year P O 2009 IEEE 22nd International Conference on MEMS,Sorrento, Italy, Jan. 25-29, 2009 p1043

    [34]

    Yang J, Yue X, Wen Y, Li P, Yu Q, Bai X 2014 Sensor Actuator. A: Phys. 205 47

    [35]

    Yue X H, Yang J, Wen Y M, Li P, Bai X L 2013 Chin. J. Sci. Instrum. 34 1961 (in Chinese) [岳喜海, 杨进, 文玉梅, 李平, 白小玲 2013 仪器仪表学报 34 1961]

    [36]

    Zhang Y M, Yang C, Ma L, Wang K F 2012 Comput. Eng. 38 71 (in Chinese) [张永梅, 杨冲, 马礼, 王凯峰 2012 计算机工程 38 71]

    [37]

    Zhang D Z, Yang T, Wei D M 2006 Transd. Microsyst. Techn. 25 10 (in Chinese) [张大踪, 杨涛, 魏东梅 2006 传感器与微系统 25 10]

  • [1]

    Su W J, Zu J, Zhu Y 2014 J. Intel. Mat. Syst. Str. 25 430

    [2]

    Fan K Q, Xu C H, Wang W D, Fang Y 2014 Chin. Phys. B 23 084501

    [3]

    Huang P C, Tsai T H, Yang Y J 2013 Microelectron. Eng. 111 214

    [4]

    Dai X, Wen Y, Li P, Yang J, Li M 2011 Sensor Actuator. A: Phys. 166 94

    [5]

    Zhan Y Z, Wang G Q 2014 J.Vib. Eng. 27 871 (in Chinese) [展永政, 王光庆 2014 振动工程学报 27 871]

    [6]

    Wang G, Zhang W, Liu C, Yang B Q, Liao W X 2015 Chin. J. Sensor Actuat. 28 1494 (in Chinese) [王光庆, 张伟, 刘创, 杨斌强, 廖维新 2015 传感技术学报 28 1494]

    [7]

    Tan W, Wang X P, Cao J J 2014 Acta Phys. Sin. 63 240504 (in Chinese) [唐炜, 王小璞, 曹景军 2014 物理学报 63 240504]

    [8]

    Yang J, Wen Y, Li P, Dai X 2011 Sensor Actuator. A: Phys. 168 358

    [9]

    Bai X, Wen Y, Li P, Yang J, Peng X, Yue X 2014 Sensor Actuator. A: Phys. 209 78

    [10]

    Xu C, Liang Z, Ren B, Di W, Luo H, Wang D, Wang K, Chen Z 2013 J. Appl. Phys. 114 114507

    [11]

    Wang G Q, Zhan Y Z, Jin W P, Liao W X 2015 J. Mech. Eng. 51 155 (in Chinese) [王光庆, 展永政, 金文平, 廖维新 2015 机械工程学报 51 155]

    [12]

    Spreemann D, Manoli Y, Folkmer B, Mintenbeck D 2006 J. Micromech. Microeng. 16 S169

    [13]

    Ylli K, Hoffmann D, Willmann A, Folkmer B, Manoli Y 2015 J. Phys.: Conf. Ser. 660 012053

    [14]

    Wang Y J, Chen C D, Sung C K 2010 Sensor Actuator. A: Phys. 159 196

    [15]

    Malaji P V, Ali S F 2015 Eur. Phys. J. Spec. Top. 224 2823

    [16]

    Ma T W, Zhang H, Xu N S 2012 Mech. Syst. Signal Process. 28 323

    [17]

    Dai X 2016 Sensor Actuator. A: Phys. 241 161

    [18]

    Huang J K, OHandley R C, Bono D 2003 Proceedings of SPIE: Smart Structures and Materials California, USA, March 3-5, 2003 p229

    [19]

    Klah H, Najafi K 2008 IEEE Sens. J. 8 261

    [20]

    Liu H, Lee C, Kobayashi T, Tay C J, Quan C 2011 Procedia Eng. 25 725

    [21]

    Liu H, Lee C, Kobayashi T, Tay C J, Quan C 2012 Sensor Actuator. A: Phys. 186 242

    [22]

    zge Z, Klah H 2013 Sensor Actuator. A: Phys. 202 124

    [23]

    Tang Q, Yang Y, Li X 2014 Rev. Sci. Instrum. 84 1

    [24]

    Dong S, Li J, Viehland D 2003 IEEE T. Ultrason. Fekroelectr. Freq. Control 50 1253

    [25]

    Dai X Z, Wen Y M, Li P, Yang J, Jiang X F 2010 Acta Phys. Sin. 59 2137 (in Chinese) [代显智, 文玉梅, 李平, 杨进, 江小芳 2010 物理学报 59 2137]

    [26]

    Liu Y Z, Chen W L, Chen L Q 1998 Vibration Mechanics (Beijing: Higher Education Press) p45 (in Chinese) [刘延柱, 陈文良, 陈立群 1998 振动力学 (北京: 高等教育出版社) 第45页]

    [27]

    Dai X, Wen Y, Li P, Yang J, Zhang G 2009 Sensor Actuator. A: Phys. 156 350

    [28]

    Dai X, Zhang Z, Wang Y, Li J, Chen L 2014 J. Appl. Phys. 115 014104

    [29]

    Dai X Z 2014 Acta Phys. Sin. 63 207501 (in Chinese) [代显智 2014 物理学报 63 207501]

    [30]

    Xing X, Lou J, Yang G M, Obi O, Driscoll C, Sun N X 2009 Appl. Phys. Lett. 95 134103

    [31]

    Stanton S C, McGehee C C, Mann B P 2009 Appl. Phys. Lett. 95 174103

    [32]

    Ma H A, Liu J Q, Tang G, Yang C S, Li Y G 2011 Transd. Microsyst. Techn. 30 66 (in Chinese) [马华安, 刘景全, 唐刚, 杨春生, 李以贵 2011 传感器与微系统 30 66]

    [33]

    Bartsch U, Gaspar J, Year P O 2009 IEEE 22nd International Conference on MEMS,Sorrento, Italy, Jan. 25-29, 2009 p1043

    [34]

    Yang J, Yue X, Wen Y, Li P, Yu Q, Bai X 2014 Sensor Actuator. A: Phys. 205 47

    [35]

    Yue X H, Yang J, Wen Y M, Li P, Bai X L 2013 Chin. J. Sci. Instrum. 34 1961 (in Chinese) [岳喜海, 杨进, 文玉梅, 李平, 白小玲 2013 仪器仪表学报 34 1961]

    [36]

    Zhang Y M, Yang C, Ma L, Wang K F 2012 Comput. Eng. 38 71 (in Chinese) [张永梅, 杨冲, 马礼, 王凯峰 2012 计算机工程 38 71]

    [37]

    Zhang D Z, Yang T, Wei D M 2006 Transd. Microsyst. Techn. 25 10 (in Chinese) [张大踪, 杨涛, 魏东梅 2006 传感器与微系统 25 10]

  • [1] 杨振, 朱璨, 柯亚娇, 何雄, 罗丰, 王剑, 王嘉赋, 孙志刚. Peltier效应: 从线性到非线性. 物理学报, 2021, 70(10): 108402. doi: 10.7498/aps.70.20201826
    [2] 秦立振, 张振宇, 张坤, 丁建桥, 段智勇, 苏宇锋. 抗磁悬浮振动能量采集器动力学响应的仿真分析. 物理学报, 2018, 67(1): 018501. doi: 10.7498/aps.67.20171551
    [3] 张雨阳, 冷永刚, 谭丹, 刘进军, 范胜波. 基于磁化电流法的双稳压电悬臂梁磁力精确分析. 物理学报, 2017, 66(22): 220502. doi: 10.7498/aps.66.220502
    [4] 陈其杰, 周桂耀, 石富坤, 李端明, 苑金辉, 夏长明, 葛姝. 微结构光纤近红外色散波产生的研究. 物理学报, 2015, 64(3): 034215. doi: 10.7498/aps.64.034215
    [5] 唐炜, 王小璞, 曹景军. 非线性磁式压电振动能量采集系统建模与分析. 物理学报, 2014, 63(24): 240504. doi: 10.7498/aps.63.240504
    [6] 冯丙辰, 方晟, 张立国, 李红, 童节娟, 李文茜. 基于压缩感知理论的非线性γ谱分析方法. 物理学报, 2013, 62(11): 112901. doi: 10.7498/aps.62.112901
    [7] 丁虎, 严巧赟, 陈立群. 轴向加速运动黏弹性梁受迫振动中的混沌动力学. 物理学报, 2013, 62(20): 200502. doi: 10.7498/aps.62.200502
    [8] 刘亚红, 方石磊, 顾帅, 赵晓鹏. 多频与宽频超材料吸收器. 物理学报, 2013, 62(13): 134102. doi: 10.7498/aps.62.134102
    [9] 吴钦宽. 一类非线性扰动Burgers方程的孤子变分迭代解法. 物理学报, 2012, 61(2): 020203. doi: 10.7498/aps.61.020203
    [10] 张建文, 李金峰, 吴润衡. 强阻尼非线性热弹耦合杆系统的全局吸引子. 物理学报, 2011, 60(7): 070205. doi: 10.7498/aps.60.070205
    [11] 杨永锋, 吴亚锋, 任兴民, 裘焱. 随机噪声对经验模态分解非线性信号的影响. 物理学报, 2010, 59(6): 3778-3784. doi: 10.7498/aps.59.3778
    [12] 吕君, 赵正予, 张援农, 周晨. 非线性对大气介质中阵列聚焦声场分布影响的研究. 物理学报, 2010, 59(12): 8662-8668. doi: 10.7498/aps.59.8662
    [13] 张美艳, 李曙光, 姚艳艳, 张磊, 付博, 尹国冰. 微结构纤芯对光子晶体光纤基本特性的影响. 物理学报, 2010, 59(5): 3278-3285. doi: 10.7498/aps.59.3278
    [14] 代显智, 文玉梅, 李平, 杨进, 江小芳. 采用磁电换能器的振动能量采集器. 物理学报, 2010, 59(3): 2137-2146. doi: 10.7498/aps.59.2137
    [15] 莫嘉琪, 张伟江, 陈贤峰. 一类强非线性发展方程孤波变分迭代解法. 物理学报, 2009, 58(11): 7397-7401. doi: 10.7498/aps.58.7397
    [16] 邹建龙, 马西奎. 一类由饱和引起的非线性现象. 物理学报, 2008, 57(2): 720-725. doi: 10.7498/aps.57.720
    [17] 赵国伟, 王之江, 徐跃民, 粱志伟, 徐 杰. 射频激励等离子体非线性效应的FDTD数值模拟. 物理学报, 2007, 56(9): 5304-5308. doi: 10.7498/aps.56.5304
    [18] 莫嘉琪, 张伟江, 何 铭. 强非线性发展方程孤波近似解. 物理学报, 2007, 56(4): 1843-1846. doi: 10.7498/aps.56.1843
    [19] 莫嘉琪, 张伟江, 陈贤峰. 强非线性发展方程孤波同伦解法. 物理学报, 2007, 56(11): 6169-6172. doi: 10.7498/aps.56.6169
    [20] 谭文, 王耀南, 刘祖润, 周少武. 非线性系统混沌运动的神经网络控制. 物理学报, 2002, 51(11): 2463-2466. doi: 10.7498/aps.51.2463
计量
  • 文章访问数:  4786
  • PDF下载量:  314
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-12
  • 修回日期:  2016-03-24
  • 刊出日期:  2016-07-05

/

返回文章
返回