搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅锗量子阱结构在硅异质结太阳电池中应用的数值模拟

张晓宇 张丽平 马忠权 刘正新

引用本文:
Citation:

硅锗量子阱结构在硅异质结太阳电池中应用的数值模拟

张晓宇, 张丽平, 马忠权, 刘正新

Numerical simulation of silicon heterojunction solar cells with Si/Si1-xGex quantum wells

Zhang Xiao-Yu, Zhang Li-Ping, Ma Zhong-Quan, Liu Zheng-Xin
PDF
导出引用
  • 利用半导体工艺和器件仿真软件silvaco TCAD (Technology Computer Aided Design), 模拟研究了采用硅/硅锗合金(silicon /silicon germanium alloy, Si/Si1-xGex)量子阱结构作为吸收层的薄膜晶体硅异质结(heterojunction with intrinsic thin layer, HIT)太阳电池各项性能. 模拟结果显示, 长波波段光学吸收随锗含量的增加而增加, 而开路电压则因Si1-xGex层带隙的降低而下降. 锗含量为0.25时, 短路电流密度的增加补偿了开路电压的衰减, 效率提升0.2%. 氢化非晶硅/晶体硅(a-Si:H/c-Si)界面空穴密度以及Si1-xGex量子阱的体空穴载流子浓度制约着空穴费米能级的位置, 进而影响到开路电压的大小. 随着锗含量增加, a-Si:H/c-Si 界面缺陷对开压的影响降低, Si1-xGex量子阱的体缺陷对开压的影响则相应增加. 高效率含Si1-xGex量子阱结构的硅异质结(HIT-QW)太阳电池的制备需要a-Si:H/c-Si界面缺陷的良好钝化以及高质量Si1-xGex量子阱的生长.
    Heterojunction with intrinsic thin-layer (HIT) solar cells attract attention due to their high open circuit voltage and stable performance. However, short circuit current density is difficult to improve due to light losses of transparent conductive oxide and hydrogenated amorphous silicon passivation (a-Si:H) layer and low absorption coefficient of crystalline silicon (c-Si). Silicon germanium alloy (Si/Si1-xGex) quantum wells and quantum dots are capable of improving low light utilization by strong optical absorption in the infrared region. In this article, opto-MoS2of the HIT solar cells integrated with Si/Si1-xGex quantum wells (HIT-QW) as a surface absorber are investigated by numerical simulation with Technology Computer Aided Design (TCAD). The influences of germanium content on the MoS2of HIT solar cells with long carrier lifetimes of Si1-xGex layers (p*) and defect-free a-Si:H/c-Si interface are investigated at first. The simulation results indicate that optical utilization in the infrared region is enhanced with the increase of germanium fraction, while open circuit voltage degrades due to the decreasing of the energy band gap of Si1-xGex, radiative recombination and auger recombination mechanism in the Si/Si1-xGex quantum wells. And the conversion efficiency reaches a maximum value at a germanium fraction of 0.25 then drops distinctly. When the germanium fraction increases from 0 to 0.25, the short circuit current density increases from 34.3 mA/cm2 to 34.8 mA/cm2, while the open circuit voltage declines from 749 mV to 733 mV. Hence, the conversion efficiency increases from 21.5% to 21.7% due to the fact that the enhancement of short circuit current density compensates for the reduction of open circuit voltage. When the germanium content increases to more than 50%, a serious open circuit voltage loss of more than 130 mV associated with the energy band gap loss of Si1-xGex arises in the HIT-QW solar cells, which indicates that the dominating carrier transport mechanism changes from shockley diffusion to recombination in the Si/Si1-xGex quantum wells. Subsequently, the influences of interface defects at a-Si:H/c-Si interface and bulk recombination centers in the Si/Si1-xGex quantum wells are discussed. Both interface holes at a-Si:H/c-Si interface and bulk holes in Si1-xGex quantum wells can be recombined through the interface defects at a-Si:H/c-Si interface and bulk recombination centers in the Si/Si1-xGex quantum wells, respectively, which restricts the position of hole fermi level in the open circuit condition. When the germanium fraction increases, the influence of interface defects at a-Si:H/c-Si interface becomes weak on the degradation of open circuit voltage compared with the significant influence of the bulk trap centers. Moreover, p* of longer than 510-5 s is necessary for the retention of electrical performance of HIT-QW solar cells by the simulation. Based on this research, high-efficiency HIT solar cells can be achieved by incorporating high-quality Si/Si0.75Ge0.25 quantum wells, which also requires the impactful passivation of a-Si:H/c-Si interface.
      通信作者: 张丽平, zlp_wan@mail.sim.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 61204005)资助的课题.
      Corresponding author: Zhang Li-Ping, zlp_wan@mail.sim.ac.cn
    • Funds: Project supported by the the National Natural Science Foundation of China (Grant No. 61204005).
    [1]

    Taguchi M, Kawamoto K, Tsuge S, Baba T, Sakata H, Morizane M, Uchihashi K, Nakamura N, Kiyama S, Oota O 2000 Prog. Photovolt. 8 503

    [2]

    Dao V A, Heo J, Choi H, Kim Y, Park S, Jung S, Lakshminarayan N, Yi J 2010 Sol. Energy 84 777

    [3]

    Bivour M, Meinhardt C, Pysch D, Reichel C, Ritzau K U, Hermle M, Glunz S W 2010 35th IEEE Photovoltaic Spec. Conf. Honolulu, Hawaii, USA, June 20-25, 2010 p1304

    [4]

    Hekmatshoar B, Shahrjerdi D, Hopstaken M, Ott J A, Sadana D K 2012 Appl. Phys. Lett. 101 103906

    [5]

    Kanevce A, Mezger W K 2009 J. Appl. Phys. 105 969730

    [6]

    Schulze T F, Korte L, Conrad E, Schmidt M, Rech B 2010 J. Appl. Phys. 107 023711

    [7]

    Rahmouni M, Datta A, Chatterjee P, Damon-Lacoste J, Ballif C, Cabarrocas P R I 2010 J. Appl. Phys. 107 054521

    [8]

    Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K, Maruyama E 2014 IEEE. J. Photovolt. 4 96

    [9]

    Masuko K, Shigematsu M, Hashiguchi T, Fujishima D, Kai M, Yoshimura N, Yamaguchi T, Ichihashi Y, Mishima T, Matsubara N, Yamanishi T, Takahama T, Taguchi M, Maruyama E, Okamoto S 2014 IEEE. J. Photovolt. 4 1433

    [10]

    Jiang C W, Green M A 2006 J. Appl. Phys. 99 114902

    [11]

    Wang T, Zhang J J, Liu H Y 2015 Acta Phys. Sin. 64 0204209 (in Chinese) [王霆, 张建军, Huiyun Liu 2015 物理学报 64 0204209]

    [12]

    Jiang B Y, Zheng J B, Wang C F, Hao J, Cao C D 2012 Acta Phys. Sin. 61 138801 (in Chinese) [姜冰一, 郑建邦, 王春锋, 郝娟, 曹崇德 2012 物理学报 61 138801]

    [13]

    Li W J, Zhong X H 2015 Acta Phys. Sin. 64 038806 (in Chinese) [李文杰, 钟新华 2015 物理学报 64 038806]

    [14]

    Conibeer G, Green M, Corkish R, Cho Y, Cho E C, Jiang C W, Fangsuwannarak T, Pink E, Huang Y D, Puzzer T, Trupke T, Richards B, Shalav A, Lin K L 2006 Thin Solid Films 511 654

    [15]

    Luque A, Marti A 1997 Phys. Rev. Lett. 78 5014

    [16]

    Tawancy H M 2012 J. Mater. Sci. 47 93

    [17]

    Liu Z, Zhou T W, Li L L, Zuo Y H, He C, Li C B, Xue C L, Cheng B W, Wang Q M 2013 Appl. Phys. Lett. 103 082101

    [18]

    Fukatsu S, Sunamura H, Shiraki Y, Komiyama S 1997 Appl. Phys. Lett. 71 258

    [19]

    Tayagaki T, Hoshi Y, Usami N 2013 Sci. Rep. 3 2703

    [20]

    Ye H, Yu J Z 2014 Sci. Technol. Adv. Mater. 15 024601

    [21]

    Jiang B, Dong T, Su Y, He Y, Wang K Y 2014 J. Microelectromech. Syst. 23 213

    [22]

    Linder K K, Zhang F C, Rieh J S, Bhattacharya P, Houghton D 1997 Appl. Phys. Lett. 70 3224

    [23]

    Fonash S J 1980 J. Appl. Phys. 51 2115

    [24]

    Saad M, Kassis A 2003 Sol. Energy Mater. Sol. Cells 79 507

    [25]

    Ghannam M, Shehadah G, Abdulraheem Y, Poortmans J 2015 Sol. Energy Mater. Sol. Cells 132 320

  • [1]

    Taguchi M, Kawamoto K, Tsuge S, Baba T, Sakata H, Morizane M, Uchihashi K, Nakamura N, Kiyama S, Oota O 2000 Prog. Photovolt. 8 503

    [2]

    Dao V A, Heo J, Choi H, Kim Y, Park S, Jung S, Lakshminarayan N, Yi J 2010 Sol. Energy 84 777

    [3]

    Bivour M, Meinhardt C, Pysch D, Reichel C, Ritzau K U, Hermle M, Glunz S W 2010 35th IEEE Photovoltaic Spec. Conf. Honolulu, Hawaii, USA, June 20-25, 2010 p1304

    [4]

    Hekmatshoar B, Shahrjerdi D, Hopstaken M, Ott J A, Sadana D K 2012 Appl. Phys. Lett. 101 103906

    [5]

    Kanevce A, Mezger W K 2009 J. Appl. Phys. 105 969730

    [6]

    Schulze T F, Korte L, Conrad E, Schmidt M, Rech B 2010 J. Appl. Phys. 107 023711

    [7]

    Rahmouni M, Datta A, Chatterjee P, Damon-Lacoste J, Ballif C, Cabarrocas P R I 2010 J. Appl. Phys. 107 054521

    [8]

    Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K, Maruyama E 2014 IEEE. J. Photovolt. 4 96

    [9]

    Masuko K, Shigematsu M, Hashiguchi T, Fujishima D, Kai M, Yoshimura N, Yamaguchi T, Ichihashi Y, Mishima T, Matsubara N, Yamanishi T, Takahama T, Taguchi M, Maruyama E, Okamoto S 2014 IEEE. J. Photovolt. 4 1433

    [10]

    Jiang C W, Green M A 2006 J. Appl. Phys. 99 114902

    [11]

    Wang T, Zhang J J, Liu H Y 2015 Acta Phys. Sin. 64 0204209 (in Chinese) [王霆, 张建军, Huiyun Liu 2015 物理学报 64 0204209]

    [12]

    Jiang B Y, Zheng J B, Wang C F, Hao J, Cao C D 2012 Acta Phys. Sin. 61 138801 (in Chinese) [姜冰一, 郑建邦, 王春锋, 郝娟, 曹崇德 2012 物理学报 61 138801]

    [13]

    Li W J, Zhong X H 2015 Acta Phys. Sin. 64 038806 (in Chinese) [李文杰, 钟新华 2015 物理学报 64 038806]

    [14]

    Conibeer G, Green M, Corkish R, Cho Y, Cho E C, Jiang C W, Fangsuwannarak T, Pink E, Huang Y D, Puzzer T, Trupke T, Richards B, Shalav A, Lin K L 2006 Thin Solid Films 511 654

    [15]

    Luque A, Marti A 1997 Phys. Rev. Lett. 78 5014

    [16]

    Tawancy H M 2012 J. Mater. Sci. 47 93

    [17]

    Liu Z, Zhou T W, Li L L, Zuo Y H, He C, Li C B, Xue C L, Cheng B W, Wang Q M 2013 Appl. Phys. Lett. 103 082101

    [18]

    Fukatsu S, Sunamura H, Shiraki Y, Komiyama S 1997 Appl. Phys. Lett. 71 258

    [19]

    Tayagaki T, Hoshi Y, Usami N 2013 Sci. Rep. 3 2703

    [20]

    Ye H, Yu J Z 2014 Sci. Technol. Adv. Mater. 15 024601

    [21]

    Jiang B, Dong T, Su Y, He Y, Wang K Y 2014 J. Microelectromech. Syst. 23 213

    [22]

    Linder K K, Zhang F C, Rieh J S, Bhattacharya P, Houghton D 1997 Appl. Phys. Lett. 70 3224

    [23]

    Fonash S J 1980 J. Appl. Phys. 51 2115

    [24]

    Saad M, Kassis A 2003 Sol. Energy Mater. Sol. Cells 79 507

    [25]

    Ghannam M, Shehadah G, Abdulraheem Y, Poortmans J 2015 Sol. Energy Mater. Sol. Cells 132 320

  • [1] 周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥. 基于双层电子传输层钙钛矿太阳能电池的物理机制. 物理学报, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [2] 陈俊帆, 任慧志, 侯福华, 周忠信, 任千尚, 张德坤, 魏长春, 张晓丹, 侯国付, 赵颖. 钙钛矿/硅叠层太阳电池中平面a-Si:H/c-Si异质结底电池的钝化优化及性能提高. 物理学报, 2019, 68(2): 028101. doi: 10.7498/aps.68.20181759
    [3] 万亚州, 高明, 李勇, 郭海波, 李拥华, 徐飞, 马忠权. 掺杂非晶氧化硅薄膜中三元化合态与电子结构的第一性原理计算. 物理学报, 2017, 66(18): 188802. doi: 10.7498/aps.66.188802
    [4] 郑雪, 余学功, 杨德仁. -Si:H/SiNx叠层薄膜对晶体硅太阳电池的钝化. 物理学报, 2013, 62(19): 198801. doi: 10.7498/aps.62.198801
    [5] 戴显英, 杨程, 宋建军, 张鹤鸣, 郝跃, 郑若川. 应变Ge/Si1-xGex 价带色散模型. 物理学报, 2012, 61(13): 137104. doi: 10.7498/aps.61.137104
    [6] 丁文革, 桑云刚, 于威, 杨彦斌, 滕晓云, 傅广生. 富硅氮化硅/c-Si异质结中的电流输运机理研究. 物理学报, 2012, 61(24): 247304. doi: 10.7498/aps.61.247304
    [7] 钟春良, 耿魁伟, 姚若河. a-Si:H/c-Si 异质结太阳电池 J-V 曲线的 S-Shape 现象. 物理学报, 2010, 59(9): 6538-6544. doi: 10.7498/aps.59.6538
    [8] 宋建军, 张鹤鸣, 宣荣喜, 胡辉勇, 戴显英. 应变Si/(001)Si1-xGex空穴有效质量各向异性. 物理学报, 2009, 58(7): 4958-4961. doi: 10.7498/aps.58.4958
    [9] 宋建军, 张鹤鸣, 胡辉勇, 宣荣喜, 戴显英. 应变Si1-xGex能带结构研究. 物理学报, 2009, 58(11): 7947-7951. doi: 10.7498/aps.58.7947
    [10] 宋建军, 张鹤鸣, 戴显英, 胡辉勇, 宣荣喜. 第一性原理研究应变Si/(111)Si1-xGex能带结构. 物理学报, 2008, 57(9): 5918-5922. doi: 10.7498/aps.57.5918
    [11] 赵 雷, 周春兰, 李海玲, 刁宏伟, 王文静. a-Si(n)/c-Si(p)异质结太阳电池薄膜硅背场的模拟优化. 物理学报, 2008, 57(5): 3212-3218. doi: 10.7498/aps.57.3212
    [12] 胡志华, 廖显伯, 刁宏伟, 夏朝凤, 曾湘波, 郝会颖, 孔光临. p型纳米硅与a-Si:H不锈钢底衬nip太阳电池. 物理学报, 2005, 54(6): 2945-2949. doi: 10.7498/aps.54.2945
    [13] 胡志华, 廖显伯, 曾湘波, 徐艳月, 张世斌, 刁宏伟, 孔光临. 纳米硅(nc-Si:H )/晶体硅(c-Si)异质结太阳电池的数值模拟分析. 物理学报, 2003, 52(1): 217-224. doi: 10.7498/aps.52.217
    [14] 彭英才, 徐刚毅, 何宇亮, 刘 明, 李月霞. (n)nc-Si:H/(p)c-Si异质结中载流子输运性质的研究. 物理学报, 2000, 49(12): 2466-2471. doi: 10.7498/aps.49.2466
    [15] 杨 宇, 夏冠群, 赵国庆, 王 迅. Si离子注入对分子束外延Si1-xGex/Si量子阱发光特性的影响. 物理学报, 1998, 47(6): 978-984. doi: 10.7498/aps.47.978
    [16] 黄靖云, 叶志镇, 阙端麟. Si1-xGex/Si异质结构中热应力对临界厚度的影响. 物理学报, 1997, 46(10): 2010-2014. doi: 10.7498/aps.46.2010
    [17] 陈光华, 郭永平, 姚江宏, 宋志忠, 张仿清. a-Si:H/a-SiCx:H超晶格的界面特性. 物理学报, 1994, 43(11): 1847-1853. doi: 10.7498/aps.43.1847
    [18] 张仿清, 贺德衍, 宋志忠, 柯宁, 陈光华. B掺杂a-SiC:H/本征a-Si:H异质结中的B扩散. 物理学报, 1990, 39(12): 1982-1988. doi: 10.7498/aps.39.1982
    [19] 彭少麒;苏子敏;刘景希. a-Si:H结的横向光生伏特效应. 物理学报, 1989, 38(8): 1235-1244. doi: 10.7498/aps.38.1235
    [20] 王万录, 廖克俊. 非晶态异质结构a-Si:H/a-SiNx:H和a-Si:H,a-SiNx:H薄膜的应力研究. 物理学报, 1987, 36(12): 1529-1537. doi: 10.7498/aps.36.1529
计量
  • 文章访问数:  4955
  • PDF下载量:  272
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-09
  • 修回日期:  2016-04-05
  • 刊出日期:  2016-07-05

/

返回文章
返回