搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氟利昂F114B2分子在飞秒紫外辐射下的解离动力学

刘玉柱 邓绪兰 李帅 管跃 李静 龙金友 张冰

引用本文:
Citation:

氟利昂F114B2分子在飞秒紫外辐射下的解离动力学

刘玉柱, 邓绪兰, 李帅, 管跃, 李静, 龙金友, 张冰

Multi-photon dissociation dynamics of Freon 114B2 under UV radiation by femtosecond laser pulse

Liu Yu-Zhu, Deng Xu-Lan, Li Shuai, Guan Yue, Li Jing, Long Jin-You, Zhang Bing
PDF
导出引用
  • 含氟利昂在内的卤代烷烃在太阳光辐射下解离生成破坏臭氧的游离态卤素原子,是破坏大气臭氧层的主要元凶.利用飞秒激光技术结合飞行时间质谱以及离子速度成像探测技术研究了氟利昂F114B2(四氟二溴乙烷)分子在267 nm飞秒激光辐射作用下的多光子电离解离动力学.利用飞行时间质谱技术,得到了四氟二溴乙烷在267 nm飞秒激光脉冲作用下发生多光子解离产生的质谱,发现三个主要碎片离子C2F4Br+,C2F4+,和CF2Br+,分别对应了三种主要的解离机理:1)单个CBr键断裂C2F4Br2+C2F4Br++Br;2)两个CBr键断裂C2F4Br2+C2F4++2Br;3)CC键断裂C2F4Br2+CF2Br++CF2Br.实验采用离子速度成像技术对最主要的碎片离子C2F4Br+进行成像,发现该碎片离子的动能分布可由三个高斯分布曲线拟合,说明单个CBr键断裂机理对应于三种解离通道.通过影像进一步分析还得到了三个通道的平动能和角分布各向异性参数等详尽的动力学信息.通过密度泛函理论计算对解离动力学进行了进一步的分析和讨论.
    The ozone layer which absorbs harmful solar UV radiation is a necessary umbrella for human beings and biosphere. A large amount of alkyl halide including freon exhausted by human into the atmosphere poses a great threat to the ozone layer. Freon dissociates into the product of halogen radical, like Br and Cl, induced by UV sunlight radiation, which is found to be the main culprit for the destruction of atmospheric ozone. In this paper, time-of-flight (TOF) mass spectrometry and velocity map imaging technique are employed for investigating the multiphoton dissociation dynamics of Freon F114B2 (C2F4Br2) induced by femtosecond UV radiation at 267 nm. Fragment mass spectra of C2F4Br2 under UV radiation at 266 nm are obtained by TOF mass spectrometry. Three daughter ions C2F4Br+, C2F4+ and CF2Br+are discovered together with the parent ions C2F4Br2+. And three corresponding photodissociation mechanisms are concluded as follows: 1) C2F4Br2+C2F4Br++Br with single CBr bond breaking and direct production of Br radical; 2) C2F4Br2+C2F4++2Br with double CBr bonds breaking and production of two Br radical; 3) C2F4Br2+CF2Br++CF2Br with CC bond breaking. Velocity map images of the strongest daughter ion C2F4Br+with CBr breaking are measured by imaging apparatus. The kinetic energy distribution of C2F4Br+ ions is obtained from the measured velocity map images. And it can be well fitted by three Gaussian curves which describe normal distribution. It indicates that the production of the fragment C2F4Br+ stems from three different dissociation channels. Additional photodissociation dynamics is obtained by analyzing the angular distribution of the measured image. The values of anisotropy parameter are measured to be 0.1 (for the low energy channel), 0.8 (for the middle energy channel) and 1.4 (for the high energy channel) for the fragment C2F4Br+, respectively. The ratios of parallel transition to perpendicular transition are determined for three different channels. In addition, density functional theory calculations are also performed for further analysis and discussion. The optimized geometries of ground state and ionic state of C2F4Br2 are obtained and compared at the level of B3LYP/6-311G++(d, p). The calculated information about ionic states, including energy level and oscillator strength for the ionic excited states, are given.
      通信作者: 刘玉柱, yuzhu.liu@gmail.com
    • 基金项目: 国家自然科学基金(批准号:11304157,21303255)和江苏省六大人才高峰高层次人才项目(批准号:2015-JNHB-011)资助的课题.
      Corresponding author: Liu Yu-Zhu, yuzhu.liu@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11304157, 21303255) and Six Talent Peaks Project in Jiangsu Province, China (Grant No. 2015-JNHB-011).
    [1]

    Molina M J, Rowland F S 1974 Nature 249 810

    [2]

    Satyanarayana M D V, Kotaiah B 2012 IOSR J. Engineer. 2 2250

    [3]

    Farman J C, Gardiner B G, Shanklin J D 1985 Nature 315 207

    [4]

    Butler J H, Battle M, Bender M L, Montzka S A, Brarke A D, Saltzman E S, Sucher C M, Severinghaus J P, Elkins J W 1999 Nature 399 749

    [5]

    Wang D S, Kim M S, Choe J C, Ha T K 2001 J. Chem. Phys. 115 5454

    [6]

    Schiermeier Q 2007 Nature 449 382

    [7]

    Hobe M 2007 Science 318 1878

    [8]

    Zuiderweg A, Kaiser J, Laube J C, Rockmann T, Holzinger R 2011 Atmos Chem. Phys. Discuss. 11 33173

    [9]

    Liu Y Z, Chen Y Y, Zheng G G, Jin F, Knopp G 2016 Acta Phys. Sin. 65 053302 (in Chinese) [刘玉柱, 陈云云, 郑改革, 金峰, Gregor Knopp 2016物理学报65 053302]

    [10]

    Liu Y Z, Xiao S R, Wang J F, He Z F, Qiu X J, Knopp G 2016 Acta Phys. Sin. 65 113301 (in Chinese) [刘玉柱, 肖韶荣, 王俊锋, 何仲福, 邱学军, Gregor Knopp 2016物理学报65 113301]

    [11]

    Eppink A T J B, Parker D H 1997 Rev. Sci. Instrum. 68 3477

    [12]

    Parker D H, Eppink A T J B 1997 J. Chem. Phys. 107 2357

    [13]

    Liu Y Z, Xiao S R, Zhang C Y, Zheng G G, Chen Y Y 2012 Acta Phys. Sin. 61 193301 (in Chinese) [刘玉柱, 肖韶荣, 张成义, 郑改革, 陈云云2012物理学报61 193301]

    [14]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2009 Gaussian 09 Revision E.01 Gaussian, Inc., Wallingford CT

    [15]

    Chau F T, McDowell C A 1976 J. Phys. Chem. 80 2923

    [16]

    Dribinski V, Ossadtchi A, Mandelshtam V A, Reisler H 2002 Rev. Sci. Instrum. 73 2634

    [17]

    Zare R N 1972 Mol. Photochem. 4 1

  • [1]

    Molina M J, Rowland F S 1974 Nature 249 810

    [2]

    Satyanarayana M D V, Kotaiah B 2012 IOSR J. Engineer. 2 2250

    [3]

    Farman J C, Gardiner B G, Shanklin J D 1985 Nature 315 207

    [4]

    Butler J H, Battle M, Bender M L, Montzka S A, Brarke A D, Saltzman E S, Sucher C M, Severinghaus J P, Elkins J W 1999 Nature 399 749

    [5]

    Wang D S, Kim M S, Choe J C, Ha T K 2001 J. Chem. Phys. 115 5454

    [6]

    Schiermeier Q 2007 Nature 449 382

    [7]

    Hobe M 2007 Science 318 1878

    [8]

    Zuiderweg A, Kaiser J, Laube J C, Rockmann T, Holzinger R 2011 Atmos Chem. Phys. Discuss. 11 33173

    [9]

    Liu Y Z, Chen Y Y, Zheng G G, Jin F, Knopp G 2016 Acta Phys. Sin. 65 053302 (in Chinese) [刘玉柱, 陈云云, 郑改革, 金峰, Gregor Knopp 2016物理学报65 053302]

    [10]

    Liu Y Z, Xiao S R, Wang J F, He Z F, Qiu X J, Knopp G 2016 Acta Phys. Sin. 65 113301 (in Chinese) [刘玉柱, 肖韶荣, 王俊锋, 何仲福, 邱学军, Gregor Knopp 2016物理学报65 113301]

    [11]

    Eppink A T J B, Parker D H 1997 Rev. Sci. Instrum. 68 3477

    [12]

    Parker D H, Eppink A T J B 1997 J. Chem. Phys. 107 2357

    [13]

    Liu Y Z, Xiao S R, Zhang C Y, Zheng G G, Chen Y Y 2012 Acta Phys. Sin. 61 193301 (in Chinese) [刘玉柱, 肖韶荣, 张成义, 郑改革, 陈云云2012物理学报61 193301]

    [14]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2009 Gaussian 09 Revision E.01 Gaussian, Inc., Wallingford CT

    [15]

    Chau F T, McDowell C A 1976 J. Phys. Chem. 80 2923

    [16]

    Dribinski V, Ossadtchi A, Mandelshtam V A, Reisler H 2002 Rev. Sci. Instrum. 73 2634

    [17]

    Zare R N 1972 Mol. Photochem. 4 1

  • [1] 赵嘉琳, 程开, 于雪克, 赵纪军, 苏艳. 几种典型含能材料光激发解离的含时密度泛函理论研究. 物理学报, 2021, 70(20): 203301. doi: 10.7498/aps.70.20210670
    [2] 姚洪斌, 蒋相站, 曹长虹, 李文亮. HD+分子的强场光解离动力学及其量子调控的理论研究. 物理学报, 2019, 68(17): 178201. doi: 10.7498/aps.68.20190400
    [3] 汪小丽, 姚关心, 杨新艳, 秦正波, 郑贤锋, 崔执凤. 甲胺分子的紫外光解离动力学实验研究. 物理学报, 2018, 67(24): 243301. doi: 10.7498/aps.67.20181731
    [4] 颜逸辉, 刘玉柱, 丁鹏飞, 尹文怡. 利用速度成像技术研究碘乙烷多光子电离解离动力学. 物理学报, 2018, 67(20): 203301. doi: 10.7498/aps.67.20181468
    [5] 罗金龙, 凌丰姿, 李帅, 王艳梅, 张冰. 丁酮3s里德堡态的超快光解动力学研究. 物理学报, 2017, 66(2): 023301. doi: 10.7498/aps.66.023301
    [6] 秦朝朝, 黄燕, 彭玉峰. Br2分子在360610 nm的光解离动力学研究. 物理学报, 2017, 66(19): 193301. doi: 10.7498/aps.66.193301
    [7] 刘玉柱, 陈云云, 郑改革, 金峰, Gregor Knopp. 氟利昂F113分子在飞秒激光作用下的多光子电离解离动力学. 物理学报, 2016, 65(5): 053302. doi: 10.7498/aps.65.053302
    [8] 刘玉柱, 肖韶荣, 王俊锋, 何仲福, 邱学军, Gregor Knopp. 氟利昂F1110分子在飞秒激光脉冲作用下的多光子解离动力学. 物理学报, 2016, 65(11): 113301. doi: 10.7498/aps.65.113301
    [9] 杨雪, 闫冰, 连科研, 丁大军. 1,2-环己二酮基态光解离反应的理论研究. 物理学报, 2015, 64(21): 213101. doi: 10.7498/aps.64.213101
    [10] 姚洪斌, 张季, 彭敏, 李文亮. H2+在强激光场中的解离及其量子调控的理论研究. 物理学报, 2014, 63(19): 198202. doi: 10.7498/aps.63.198202
    [11] 杨景辉, 张楠, 朱晓农. 利用相干光照明的纹影成像装置研究飞秒激光脉冲烧蚀铝靶喷射物相位的超快时间演化. 物理学报, 2013, 62(13): 134203. doi: 10.7498/aps.62.134203
    [12] 刘玉柱, 肖韶荣, 张成义, 郑改革, 陈云云. 离子速度成像系统校准及1,4-氯溴丁烷的紫外光解动力学. 物理学报, 2012, 61(19): 193301. doi: 10.7498/aps.61.193301
    [13] 左方圆, 王阳, 吴谊群, 赖天树. Ge2Sb2Te5非晶薄膜中超快载流子动力学的飞秒分辨反射光谱研究. 物理学报, 2009, 58(10): 7250-7254. doi: 10.7498/aps.58.7250
    [14] 李 瑞, 闫 冰, 赵书涛, 郭庆群, 连科研, 田传进, 潘守甫. CH3I分子的光解离的自旋-轨道从头计算. 物理学报, 2008, 57(7): 4130-4133. doi: 10.7498/aps.57.4130
    [15] 黄超群, 卫立夏, 杨 斌, 杨 锐, 王思胜, 单晓斌, 齐 飞, 张允武, 盛六四, 郝立庆, 周士康, 王振亚. HFC-152a的同步辐射真空紫外光电离和光解离研究. 物理学报, 2006, 55(3): 1083-1088. doi: 10.7498/aps.55.1083
    [16] 马 靖, 丁 蕾, 顾学军, 方 黎, 张为俊, 卫立夏, 王 晶, 杨 斌, 黄超群, 齐 飞. 三氯乙烯的真空紫外同步辐射光电离和光解离. 物理学报, 2006, 55(6): 2708-2713. doi: 10.7498/aps.55.2708
    [17] 王 仲, 张立敏, 王 峰, 李 江, 俞书勤. 281—332nm SO+2的光碎片激发谱研究. 物理学报, 2003, 52(12): 3027-3034. doi: 10.7498/aps.52.3027
    [18] 徐海峰, 刘世林, 马兴孝, 戴东旭, 解金春, 沙国河. 紫外波段CH2I2分子的光解离动力学研究. 物理学报, 2002, 51(2): 240-246. doi: 10.7498/aps.51.240
    [19] 张杰, 程丙英, 张道中, 王立华, 赵玉英, 王天眷. PbCl2分子的光解离. 物理学报, 1988, 37(5): 743-750. doi: 10.7498/aps.37.743
    [20] 林金谷, 苏阳, 单军, 杨君慧, 傅克坚. 紫外激光解离羰基铁生成超细粉末. 物理学报, 1987, 36(9): 1194-1198. doi: 10.7498/aps.36.1194
计量
  • 文章访问数:  4972
  • PDF下载量:  267
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-27
  • 修回日期:  2016-07-04
  • 刊出日期:  2016-10-05

/

返回文章
返回