搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

像散飞秒贝塞尔光在石英玻璃中刻写双芯光波导的研究

刘莎 李亚飞 蔡先勇 张楠

引用本文:
Citation:

像散飞秒贝塞尔光在石英玻璃中刻写双芯光波导的研究

刘莎, 李亚飞, 蔡先勇, 张楠

Double-core optical waveguides fabricated by astigmatic femtosecond Bessel beam in silica glass

Liu Sha, Li Ya-Fei, Cai Xian-Yong, Zhang Nan
PDF
导出引用
  • 利用角锥棱镜将准直飞秒高斯光束转变为飞秒贝塞尔光束,利用飞秒贝塞尔光束在石英玻璃样品中刻写了单芯和双芯光波导.实验中首先使用无像散的脉宽50 fs的贝塞尔激光脉冲在石英玻璃中刻写出单芯光波导,研究了波导直径和折射率改变量随激光脉冲能量和脉冲个数的变化关系.通过旋转角锥棱镜,在飞秒贝塞尔光束中引入像散,利用像散飞秒贝塞尔光束在石英玻璃中刻写了双芯光波导.实验发现,当角锥棱镜的转角为1时,可以制备出双芯间距仅为5.6m的双芯光波导.当双芯波导沿某一方向移动时,在近场可观察到从双芯输出的光强出现周期性的亮暗变化,这应是由双芯间距较小导致的.当角锥棱镜的转角增大至3和5时,制备的波导双芯之间的间距分别增大至9.1m和16.1m,此时没有观察到双芯光强随位置改变的往复变化.本文刻写的双芯光波导可用作高灵敏度差分位移传感器(可探测的最小位移小于3m).与传统的单芯波导的位移传感器相比,双芯波导差分位移传感器一方面大幅提高了探测的灵敏度和信噪比;另一方面也降低了高灵敏度位移传感器的装配难度.
    In this paper, a collimated femtosecond Gaussian beam with a central wavelength of 800 nm and a pulse duration of 50 fs is converted into a Bessel beam by an axicon with an apex angle of 140. By adjusting the femtosecond Gaussian beam incidence angle on the axicon, both anastigmatic and astigmatic femtosecond Bessel beams can be generated. Single- and double-core optical waveguides are fabricated in silica glass respectively by using anastigmatic and astigmatic femtosecond Bessel beams. Anastigmatic femtosecond Bessel beams with different single pulse energies (0.39 mJ and 0.47 mJ) are employed to fabricate the single-core optical waveguides in silica glass. The fabricated single-core waveguide's core diameter and refraction index change are found to be dependent on both the single pulse energy and pulse number used to fabricate the waveguide. By rotating the axicon, femtosecond Bessel beam with astigmatism is generated, which is used to fabricate double-core optical waveguides in silica glass. In the experiments 50 fs laser pulses with single pulse energy of 0.36 mJ are employed to fabricate the double-core optical waveguide. Experimental results show that when the rotation angle of the axicon is relatively small (1), i.e., the incidence angle of the femtosecond Gaussian beam on the axicon is 89, the distance between the two cores of the fabricated double-core waveguide is only 5.6 m. In this case the energy ratio of the coupled He-Ne laser between the two cores varies periodically as the waveguide's position changes towards one specific direction. When the axicon is rotated 3 and 5, the distances between the two cores increase respectively up to 9.1 m and 16.1 m, and no periodic variation of the coupled light energy ratio between the two cores is observed. It is inferred that the waveguides fabricated using the axicon with rotation angles of 3 and 5 are in fact optical waveguides with double parallel cores. According to the experimental results shown above, it is deduced that the double-core optical waveguide can be used as a highly sensitive differential displacement sensor, and the minimal detectable displacement is found to be less than 3 m. The light energy difference between the two cores is used to measure the displacement, so the displacement sensor made by double-core optical waveguide is a kind of differential detector with a higher signal-to-noise ratio than the frequently-used single-core waveguide displacement sensor. In addition, because the core zone of the double-core waveguide is composed of two cores separated by a distance which can be changed by adjusting the angle of the axicon before the fabrication process, the resulting larger core zone greatly facilitates the assembly process of the displacement sensor while the high detection sensitivity of the displacement is simultaneously achieved due to the using of the differential measurement method.
      通信作者: 张楠, zhangn@nankai.edu.cn
    • 基金项目: 国家自然科学基金项目(批准号:11274185,61137001,61275133)资助的课题.
      Corresponding author: Zhang Nan, zhangn@nankai.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274185, 61137001, 61275133).
    [1]

    Chan J W, Huser T R, Risbud S H, Hayden J S, Krol D M 2003 Appl. Phys. Lett. 82 2371

    [2]

    Wang J, Tu C H, Zhang S G, Lu F Y 2010 Acta Phys. Sin. 59 307 (in Chinese) [王珏, 涂成厚, 张双根,吕福云2010物理学报59 307]

    [3]

    Yu Y Y, Chang C K, Lai M W, Huang L S, Lee C K 2011 Appl. Opt. 50 6384

    [4]

    Reinhardt C, Kiyan R, Passinger S, Stepanov A L, Ostendorf A, Chichkov B N 2007 Appl. Phys. A 89 321

    [5]

    Roeske F, Benterou J, Lee R, Roos E 2003 Propell. Explos. Pyrot. 28 53

    [6]

    Ahmed F, Man S L, Sekita H, Sumiyoshi T, Kamata M 2008 Appl. Phys. A: Mater. 93 189

    [7]

    Chen F, Aldana J R V D 2014 Laser. Photon. Rev. 8 251

    [8]

    Zhang N, Yang J J, Wang M W, Zhu X N 2006 Chin. Phys. Lett. 23 3281

    [9]

    Gattass R R, Mazur E 2008 Nat. Photon. 2 219

    [10]

    Durnin J, Miceli Jr J J, Eberly J H 1984 US Patent 4432599A

    [11]

    Akturk S, Arnold C L, Prade B, Mysyrowicz A 2009 Opt. Commun. 282 3206

    [12]

    Tanaka T, Yamamoto S 2000 Opt. Commun. 184 113

    [13]

    Bin Z, Zhu L 1998 Appl. Opt. 37 2563

    [14]

    Saliminia A, Nguyen N T, Nadeau M C, Petit S, Chin S L, Vallée R 2003 J. Appl. Phys. 93 3724

    [15]

    Mcmahon D H 1984 US Patent 4432599

    [16]

    Pinnock R A, Hawker S D, Hazelden R J, Sakai I 1995 US Patent 5473156

  • [1]

    Chan J W, Huser T R, Risbud S H, Hayden J S, Krol D M 2003 Appl. Phys. Lett. 82 2371

    [2]

    Wang J, Tu C H, Zhang S G, Lu F Y 2010 Acta Phys. Sin. 59 307 (in Chinese) [王珏, 涂成厚, 张双根,吕福云2010物理学报59 307]

    [3]

    Yu Y Y, Chang C K, Lai M W, Huang L S, Lee C K 2011 Appl. Opt. 50 6384

    [4]

    Reinhardt C, Kiyan R, Passinger S, Stepanov A L, Ostendorf A, Chichkov B N 2007 Appl. Phys. A 89 321

    [5]

    Roeske F, Benterou J, Lee R, Roos E 2003 Propell. Explos. Pyrot. 28 53

    [6]

    Ahmed F, Man S L, Sekita H, Sumiyoshi T, Kamata M 2008 Appl. Phys. A: Mater. 93 189

    [7]

    Chen F, Aldana J R V D 2014 Laser. Photon. Rev. 8 251

    [8]

    Zhang N, Yang J J, Wang M W, Zhu X N 2006 Chin. Phys. Lett. 23 3281

    [9]

    Gattass R R, Mazur E 2008 Nat. Photon. 2 219

    [10]

    Durnin J, Miceli Jr J J, Eberly J H 1984 US Patent 4432599A

    [11]

    Akturk S, Arnold C L, Prade B, Mysyrowicz A 2009 Opt. Commun. 282 3206

    [12]

    Tanaka T, Yamamoto S 2000 Opt. Commun. 184 113

    [13]

    Bin Z, Zhu L 1998 Appl. Opt. 37 2563

    [14]

    Saliminia A, Nguyen N T, Nadeau M C, Petit S, Chin S L, Vallée R 2003 J. Appl. Phys. 93 3724

    [15]

    Mcmahon D H 1984 US Patent 4432599

    [16]

    Pinnock R A, Hawker S D, Hazelden R J, Sakai I 1995 US Patent 5473156

  • [1] 郑悦, 张宇璇, 孙少华, 丁鹏基, 胡碧涛, 刘作业. 飞秒激光脉冲对N2分子非绝热准直的调控. 物理学报, 2023, 72(6): 064203. doi: 10.7498/aps.72.20222112
    [2] 魏祥, 吴智政, 曹战, 王园园, DzikiMbemba. 基于磁液变形镜生成弯曲轨迹自加速类贝塞尔光束. 物理学报, 2019, 68(11): 114701. doi: 10.7498/aps.68.20190063
    [3] 刘会龙, 胡总华, 夏菁, 吕彦飞. 无衍射光束的产生及其应用. 物理学报, 2018, 67(21): 214204. doi: 10.7498/aps.67.20181227
    [4] 陈欢, 凌晓辉, 何武光, 李钱光, 易煦农. 基于Pancharatnam-Berry相位调控产生贝塞尔光束. 物理学报, 2017, 66(4): 044203. doi: 10.7498/aps.66.044203
    [5] 姚云华, 卢晨晖, 徐淑武, 丁晶新, 贾天卿, 张诗按, 孙真荣. 飞秒激光脉冲整形技术及其应用. 物理学报, 2014, 63(18): 184201. doi: 10.7498/aps.63.184201
    [6] 王文亭, 张楠, 王明伟, 何远航, 杨建军, 朱晓农. 飞秒激光烧蚀固体靶的冲击压强. 物理学报, 2013, 62(17): 170601. doi: 10.7498/aps.62.170601
    [7] 王文亭, 张楠, 王明伟, 何远航, 杨建军, 朱晓农. 飞秒激光烧蚀金属靶的冲击温度. 物理学报, 2013, 62(21): 210601. doi: 10.7498/aps.62.210601
    [8] 杜团结, 王涛, 吴逢铁. 轴棱锥对无衍射光束的线聚焦特性. 物理学报, 2013, 62(13): 134103. doi: 10.7498/aps.62.134103
    [9] 葛文琦, 柴路, 胡明列, 王清月, 苏良碧, 李红军, 郑丽和, 徐军. 镱钠共掺氟化钙锁模激光器产生190 fs光脉冲. 物理学报, 2012, 61(1): 014213. doi: 10.7498/aps.61.014213
    [10] 任志君, 吴琼, 周卫东, 吴根柱, 施逸乐. 空间诱导产生艾里-贝塞尔光弹研究. 物理学报, 2012, 61(17): 174207. doi: 10.7498/aps.61.174207
    [11] 张青, 赵研英, 魏志义. MW级峰值功率掺钛蓝宝石激光振荡器. 物理学报, 2010, 59(5): 3244-3248. doi: 10.7498/aps.59.3244
    [12] 王珏, 涂成厚, 张双根, 吕福云. 基于飞秒激光写制波导的PPKTP晶体倍频实验研究. 物理学报, 2010, 59(1): 307-310. doi: 10.7498/aps.59.307
    [13] 熊平新, 贾鑫, 贾天卿, 邓莉, 冯东海, 孙真荣, 徐至展. 三光束飞秒激光干涉在GaP,ZnSe表面诱导二维复合纳米-微米周期结构. 物理学报, 2010, 59(1): 311-316. doi: 10.7498/aps.59.311
    [14] 张驰, 胡明列, 宋有建, 张鑫, 柴路, 王清月. 自由耦合输出的大模场面积光子晶体光纤锁模激光器. 物理学报, 2009, 58(11): 7727-7734. doi: 10.7498/aps.58.7727
    [15] 王晓雷, 张 楠, 赵友博, 李智磊, 翟宏琛, 朱晓农. 飞秒激光激发空气电离的阈值研究. 物理学报, 2008, 57(1): 354-357. doi: 10.7498/aps.57.354
    [16] 赵 环, 赵研英, 田金荣, 王 鹏, 朱江峰, 令维军, 魏志义. 两台独立飞秒钛宝石振荡器的高精度主动同步研究. 物理学报, 2008, 57(2): 892-896. doi: 10.7498/aps.57.892
    [17] 李成斌, 贾天卿, 孙海轶, 李晓溪, 徐世珍, 冯东海, 王晓峰, 葛晓春, 徐至展. 飞秒激光对氟化镁烧蚀机理研究. 物理学报, 2006, 55(1): 217-220. doi: 10.7498/aps.55.217
    [18] 李德荣, 吕晓华, 吴 萍, 骆清铭, 陈 伟, 曾绍群. 声光偏转器扫描飞秒激光的时间色散补偿. 物理学报, 2006, 55(9): 4729-4733. doi: 10.7498/aps.55.4729
    [19] 王 鹏, 王兆华, 魏志义, 郑加安, 孙敬华, 张 杰. 用SPIDER法测量飞秒激光脉冲的光谱相位. 物理学报, 2004, 53(9): 3004-3009. doi: 10.7498/aps.53.3004
    [20] 林景全, 张杰, 李英骏, 陈黎明, 吕铁铮, 滕浩. 原子团簇对飞秒激光的吸收. 物理学报, 2001, 50(3): 457-461. doi: 10.7498/aps.50.457
计量
  • 文章访问数:  4480
  • PDF下载量:  164
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-06
  • 修回日期:  2016-07-12
  • 刊出日期:  2016-10-05

/

返回文章
返回