搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于TPPs-SPPs混合模式的激发以增强单纳米缝异常透射

陆云清 成心怡 许敏 许吉 王瑾

引用本文:
Citation:

基于TPPs-SPPs混合模式的激发以增强单纳米缝异常透射

陆云清, 成心怡, 许敏, 许吉, 王瑾

Extraordinary transmission of light enhanced by exciting hybrid states of Tamm and surface plasmon polaritions in a single nano-slit

Lu Yun-Qing, Cheng Xin-Yi, Xu Min, Xu Ji, Wang Jin
PDF
导出引用
  • 单纳米金属缝结构,由于其结构紧凑、易于集成、耦合效率高,常常在基于表面等离子体激元(surface plasmon polaritons,SPPs)的纳米结构器件中用于构建光源.但是,单纳米缝的低透射率一直是该结构向实际应用转化中的问题;实际上,如何有效地增强其透射率一直是研究的重点.本文提出了一种有效增强单纳米缝异常透射的方法和结构,该结构由分布式布拉格反射镜(distributed bragg reflector,DBR)和金属银薄膜纳米缝构成.当TM偏振光由DBR侧入射至DBR-银纳米缝结构时,DBR-银膜界面上的塔姆激元(Tamm plasmon polaritons,TPPs)和纳米缝中的SPPs能够同时被有效激发,并相互耦合形成TPPs-SPPs混合模式,当TPPs与SPPs满足波矢匹配条件时,利用TPPs的局域场增强效应可显著提高SPPs的激发效率,结合纳米缝中的类法布里-珀罗腔共振效应,最终可实现对单纳米缝异常透射率的有效增强.本文利用传输矩阵法和有限元算法分析了DBR-银纳米缝结构上单纳米缝的透射特性.经过参数优化,在银膜厚度为100 nm、纳米缝宽为11 nm时,DBR-银纳米缝结构的最大透射率为0.166,相对于TiO2银纳米缝结构(无DBR)的透射率(0.01),提高了16倍.该研究从基本物理机理出发,实现了对单纳米缝异常透射的增强,研究结果在纳米光子学、近场光学成像与探测、极化激元激光器等相关领域具有潜在的应用价值.
    Extraordinary optical transmission (EOT) through a metallic nano-slit or nano-slit arrays has become an efficient method to manipulate the light on a subwavelength scale. While a variety of nano-devices based on surface plasmon polaritons (SPPs) could be an ideal candidate for the next-generation ultra-compact integrated photonic circuits, this EOT phenomenon is also generally attributed to the excitation of SPPs in the nano-slit. Thus, due to its being compact in structure and amenable to integrate with other nano-devices, single nano-slit can be implemented to construct an optical source in the nano-device based on SPPs. However, the transmission through an isolated nano-slit is too low to be practically used. The main reason is that the excitation efficiency of SPPs in the nano-slit is not high enough. In fact, one of the key issues is how to enhance the excitation efficiency in a nano-slit. In this paper, a novel method and the related structure are proposed to effectively enhance the EOT in a single nano-slit by improving the excitation efficiency of SPPs. This structure is made up of a silver film on a distributed Bragg reflector (DBR), where a single nano-slit is imbedded in the silver film. Under the illumination of a TM polarized light from the DBR side of this structure, the Tamm plasmon polaritons (TPPs) at the interface between the silver film and the DBR and the SPPs in the nano-slit can be excited simultaneously. The TPP is another surface mode, which describes how an electromagnetic field is localized at the boundary of silver film and the DBR. In this structure, coupling between the TPPs and the SPPs leads to the appearance of a TPP-SPP hybrid state. When the wave-vectors between the TPP and the SPP modes are matched, due to the local field enhancement of the TPP mode, the excitation efficiency of SPPs can be improved significantly. Furthermore, utilizing the quasi Fabry-Pérot (F-P) resonance in the nano-slit, where a single nano-slit can be regarded as an F-P cavity with two open ends, a high light transmission through the single nano-slit can be achieved. In the present paper, the transmission properties of the “DBR-silver nano-slit” structure are analyzed with the finite element method and the transfer matrix method. After optimizing the structure parameters, with a thickness of the silver film of 100 nm and a width of the nano-slit of 11 nm, the light transmission through the single nano-slit in this structure can be increased by about 16 times, in comparison with the light transmission through a single nano-slit in a silver film on the TiO2 substrate (without DBR). This method of enhancing the light transmission through a single nano-slit by exciting TPPs mode and utilizing its local field enhancement property, has potential applications in the polariton lasers, the nano-scale photonic integration, the near-field imaging and sensing, and other relevant areas.
      通信作者: 陆云清, luyq@njupt.edu.cn;jinwang@njupt.edu.cn ; 王瑾, luyq@njupt.edu.cn;jinwang@njupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61575096)、国家自然科学基金青年科学基金(批准号:11404170)、国家教育部留学回国人员科研启动基金(批准号:105757)和江苏省基础研究计划基金(批准号:BK20131383)资助的课题.
      Corresponding author: Lu Yun-Qing, luyq@njupt.edu.cn;jinwang@njupt.edu.cn ; Wang Jin, luyq@njupt.edu.cn;jinwang@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61575096), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11404170), the Scientific Research Staring Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China (Grant No. 105757), and the Jiangsu Provincial Research Foundation for Basic Research, China (Grant No. BK20131383).
    [1]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667

    [2]

    Lezec H J, Degiron A, Devaux E, Linke R A, Martinmoreno L, Garciavidal F J, Ebbesen T W 2002 Science 297 820

    [3]

    Genet C, Ebbesen T W 2014 Nature 445 39

    [4]

    Moreau A, Ciracì C, Mock J J, Hill R T, Wang Q, Wiley B J, Chilkoti A, Smith D R 2012 Nature 492 86

    [5]

    Garciavidal F J, Martinmoreno L, Ebbesen T W, Kuipers L 2010 Rev. Mod. Phys. 82 729

    [6]

    Mashooq K, Talukder M A 2016 J. Appl. Phys. 119 193101

    [7]

    Farah A E, Davidson R, Malasi A, Pooser R C, Lawrie B, Kalyanaraman R 2016 Appl. Phys. Lett. 108 043101

    [8]

    Bethe H A 1944 Phys. Rev. 66 163

    [9]

    Bouwkamp C J 1954 Rep. Prog. Phys. 17 35

    [10]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [11]

    Shao W J, Li W M, Xu X L, Wang H J, Wu Y Z, Yu J 2014 Chin. Phys. B 23 117301

    [12]

    Pang Y Q, Wang J F, Ma H, Feng M D, Xia S, Xu Z, Qu S B 2016 Appl. Phys. Lett. 108 194101

    [13]

    Martín-Moreno L, García-Vidal F J, Lezec H J, Pellerin K M, Thio T, Pendry J B, Ebbesen T W 2001 Phys. Rev. Lett. 86 1114

    [14]

    Rahman A T, Majewski P, Vasilev K 2015 Opt. Lett. 37 1742

    [15]

    Jiao X, Wang P, Tang L, Lu Y, Li Q, Zhang D, Yao P, Ming H, Xie J 2005 Appl. Phys. B 80 301

    [16]

    Chen J, Li Z, Zhang X, Xiao J, Gong Q 2013 Sci. Rep. 3 1451

    [17]

    Gan Q, Guo B, Song G, Chen L, Fu Z, Ding Y J, Bartoli F J 2007 Appl. Phys. Lett. 90 161130

    [18]

    Gan Q, Fu Z, Ding Y J, Bartoli F J 2007 Opt. Express 15 18050

    [19]

    Lopeztejeira F, Rodrigo S G, Martinmoreno L, Garciavidal F J, Devaux E, Ebbesen T W, Krenn J R, Radko I P, Bozhevolnyi S I, Gonzalez M U, Weeber J C, Dereux A 2007 Nat. Phys. 3 324

    [20]

    Lopeztejeira F, Rodrigo S G, Martin-Moreno L, Garcia-Vidal F J, Devaux E, Ebbesen T W, Krenn J R, Radko I P, Bozhevolnyi S I, González M U, Weeber J C, Dereux A 2008 New J. Phys. 10 033035

    [21]

    Li Z B, Tian J G, Liu Z B, Zhou W Y, Zhang C P 2005 Opt. Express 13 9071

    [22]

    Wang C M, Huang H I, Chao C C, Chang J Y, Sheng Y 2007 Opt. Express 15 3496

    [23]

    Cui Y X, He S L 2009 Opt. Express 17 13995

    [24]

    Sun B, Wang L L, Wang L, Zhai X, Li X F, Liu J Q 2013 Opt. Laser Technol. 54 214

    [25]

    Zhang Q, Hu P, Liu C 2015 Opt. Commun. 335 231

    [26]

    Liu Y, Yu W 2012 IEEE Photon. Tech. Lett. 24 2214

    [27]

    Wu G, Chen J, Zhang R, Xiao J H, Gong Q H 2013 Opt. Lett. 38 3776

    [28]

    Kaliteevski M, Iorsh I, Brand S, Abram R A, Chamberlain J M, Kavokin A V, Shelykh I A 2007 Phys. Rev. B 76 165415

    [29]

    Friedman P S, Wright D J 2014 Opt. Lett. 39 6895

    [30]

    Dong H Y, Wang J, Cui T J 2013 Phys. Rev. B 87 045406

    [31]

    Zhang Z Q, Lu H, Wang S H, Wei Z Y, Jiang H T, Li Y H 2015 Acta Phys. Sin. 64 114202 (in Chinese)[张振清, 路海, 王少华, 魏泽勇, 江海涛, 李云辉2015物理学报64 114202]

    [32]

    Chen Y, Fan H Q, Lu B 2014 Acta Phys. Sin. 63 244207 (in Chinese)[陈颖, 范卉青, 卢波2014物理学报63 244207]

    [33]

    Lopezgarcia M, Ho Y L D, Taverne M P C, Chen L F, Murshidy M M, Edwards A P, Serry M Y, Adawi A M, Rarity J G, Oulton R 2014 Appl. Phys. Lett. 104 231116

    [34]

    Afinogenov B I, Bessonov V O, Nikulin A A, Fedyanin A A 2013 Appl. Phys. Lett. 103 061112

    [35]

    Feigenbaum E, Orenstein M 2007 J. Lightwave Technol. 25 2547

    [36]

    Dionne J A, Sweatlock L A, Atwater H A, Polman A 2006 Phys. Rev. B 73 035407

    [37]

    Vial A, Grimault A S, Macias D, Barchiesi D, Lamy D L C M 2005 Phys. Rev. B 71 085416

    [38]

    Yeh P 1988 Optical Waves in Layered Media (New York:Wiley) pp337-344

    [39]

    Takakura Y 2001 Phys. Rev. Lett. 86 5601

  • [1]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667

    [2]

    Lezec H J, Degiron A, Devaux E, Linke R A, Martinmoreno L, Garciavidal F J, Ebbesen T W 2002 Science 297 820

    [3]

    Genet C, Ebbesen T W 2014 Nature 445 39

    [4]

    Moreau A, Ciracì C, Mock J J, Hill R T, Wang Q, Wiley B J, Chilkoti A, Smith D R 2012 Nature 492 86

    [5]

    Garciavidal F J, Martinmoreno L, Ebbesen T W, Kuipers L 2010 Rev. Mod. Phys. 82 729

    [6]

    Mashooq K, Talukder M A 2016 J. Appl. Phys. 119 193101

    [7]

    Farah A E, Davidson R, Malasi A, Pooser R C, Lawrie B, Kalyanaraman R 2016 Appl. Phys. Lett. 108 043101

    [8]

    Bethe H A 1944 Phys. Rev. 66 163

    [9]

    Bouwkamp C J 1954 Rep. Prog. Phys. 17 35

    [10]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [11]

    Shao W J, Li W M, Xu X L, Wang H J, Wu Y Z, Yu J 2014 Chin. Phys. B 23 117301

    [12]

    Pang Y Q, Wang J F, Ma H, Feng M D, Xia S, Xu Z, Qu S B 2016 Appl. Phys. Lett. 108 194101

    [13]

    Martín-Moreno L, García-Vidal F J, Lezec H J, Pellerin K M, Thio T, Pendry J B, Ebbesen T W 2001 Phys. Rev. Lett. 86 1114

    [14]

    Rahman A T, Majewski P, Vasilev K 2015 Opt. Lett. 37 1742

    [15]

    Jiao X, Wang P, Tang L, Lu Y, Li Q, Zhang D, Yao P, Ming H, Xie J 2005 Appl. Phys. B 80 301

    [16]

    Chen J, Li Z, Zhang X, Xiao J, Gong Q 2013 Sci. Rep. 3 1451

    [17]

    Gan Q, Guo B, Song G, Chen L, Fu Z, Ding Y J, Bartoli F J 2007 Appl. Phys. Lett. 90 161130

    [18]

    Gan Q, Fu Z, Ding Y J, Bartoli F J 2007 Opt. Express 15 18050

    [19]

    Lopeztejeira F, Rodrigo S G, Martinmoreno L, Garciavidal F J, Devaux E, Ebbesen T W, Krenn J R, Radko I P, Bozhevolnyi S I, Gonzalez M U, Weeber J C, Dereux A 2007 Nat. Phys. 3 324

    [20]

    Lopeztejeira F, Rodrigo S G, Martin-Moreno L, Garcia-Vidal F J, Devaux E, Ebbesen T W, Krenn J R, Radko I P, Bozhevolnyi S I, González M U, Weeber J C, Dereux A 2008 New J. Phys. 10 033035

    [21]

    Li Z B, Tian J G, Liu Z B, Zhou W Y, Zhang C P 2005 Opt. Express 13 9071

    [22]

    Wang C M, Huang H I, Chao C C, Chang J Y, Sheng Y 2007 Opt. Express 15 3496

    [23]

    Cui Y X, He S L 2009 Opt. Express 17 13995

    [24]

    Sun B, Wang L L, Wang L, Zhai X, Li X F, Liu J Q 2013 Opt. Laser Technol. 54 214

    [25]

    Zhang Q, Hu P, Liu C 2015 Opt. Commun. 335 231

    [26]

    Liu Y, Yu W 2012 IEEE Photon. Tech. Lett. 24 2214

    [27]

    Wu G, Chen J, Zhang R, Xiao J H, Gong Q H 2013 Opt. Lett. 38 3776

    [28]

    Kaliteevski M, Iorsh I, Brand S, Abram R A, Chamberlain J M, Kavokin A V, Shelykh I A 2007 Phys. Rev. B 76 165415

    [29]

    Friedman P S, Wright D J 2014 Opt. Lett. 39 6895

    [30]

    Dong H Y, Wang J, Cui T J 2013 Phys. Rev. B 87 045406

    [31]

    Zhang Z Q, Lu H, Wang S H, Wei Z Y, Jiang H T, Li Y H 2015 Acta Phys. Sin. 64 114202 (in Chinese)[张振清, 路海, 王少华, 魏泽勇, 江海涛, 李云辉2015物理学报64 114202]

    [32]

    Chen Y, Fan H Q, Lu B 2014 Acta Phys. Sin. 63 244207 (in Chinese)[陈颖, 范卉青, 卢波2014物理学报63 244207]

    [33]

    Lopezgarcia M, Ho Y L D, Taverne M P C, Chen L F, Murshidy M M, Edwards A P, Serry M Y, Adawi A M, Rarity J G, Oulton R 2014 Appl. Phys. Lett. 104 231116

    [34]

    Afinogenov B I, Bessonov V O, Nikulin A A, Fedyanin A A 2013 Appl. Phys. Lett. 103 061112

    [35]

    Feigenbaum E, Orenstein M 2007 J. Lightwave Technol. 25 2547

    [36]

    Dionne J A, Sweatlock L A, Atwater H A, Polman A 2006 Phys. Rev. B 73 035407

    [37]

    Vial A, Grimault A S, Macias D, Barchiesi D, Lamy D L C M 2005 Phys. Rev. B 71 085416

    [38]

    Yeh P 1988 Optical Waves in Layered Media (New York:Wiley) pp337-344

    [39]

    Takakura Y 2001 Phys. Rev. Lett. 86 5601

  • [1] 祁云平, 贾迎君, 张婷, 丁京徽, 尉净雯, 王向贤. 基于Fano共振的金属-绝缘体-金属-石墨烯纳米管混合结构动态可调折射率传感器. 物理学报, 2022, 71(17): 178101. doi: 10.7498/aps.71.20220652
    [2] 陈颖, 周健, 丁志欣, 张敏, 朱奇光. 亚波长介质光栅/MDM波导/周期性光子晶体中双重Fano共振的形成及演变规律分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211491
    [3] 董大兴, 刘友文, 伏洋洋, 费越. 金属光栅异常透射增强黑磷烯法拉第旋转的理论研究. 物理学报, 2020, 69(23): 237802. doi: 10.7498/aps.69.20201056
    [4] 王帅, 邓子岚, 王发强, 王晓雷, 李向平. 光子角动量在环形金属纳米孔异常透射过程中的作用. 物理学报, 2019, 68(7): 077801. doi: 10.7498/aps.68.20182017
    [5] 陈颖, 谢进朝, 周鑫德, 张灿, 杨惠, 李少华. 基于表面等离子体诱导透明的半封闭T形波导侧耦合圆盘腔的波导滤波器. 物理学报, 2019, 68(23): 237301. doi: 10.7498/aps.68.20191068
    [6] 祁云平, 周培阳, 张雪伟, 严春满, 王向贤. 基于塔姆激元-表面等离极化激元混合模式的单缝加凹槽纳米结构的增强透射. 物理学报, 2018, 67(10): 107104. doi: 10.7498/aps.67.20180117
    [7] 李志明, 王玺, 聂劲松. 飞秒激光烧蚀硅材料表面形成周期波纹形貌研究. 物理学报, 2017, 66(10): 105201. doi: 10.7498/aps.66.105201
    [8] 赵泽宇, 刘晋侨, 李爱武, 徐颖. 金纳米柱阵列表面等离子体激元与J-聚集分子强耦合作用. 物理学报, 2016, 65(23): 231101. doi: 10.7498/aps.65.231101
    [9] 刘永强, 孔令宝, 杜朝海, 刘濮鲲. 基于类表面等离子体激元的矩形金属光栅色散特性的研究. 物理学报, 2015, 64(17): 174102. doi: 10.7498/aps.64.174102
    [10] 王平, 胡德骄, 肖钰斐, 庞霖. 金属光栅对表面等离子体波的辐射抑制研究. 物理学报, 2015, 64(8): 087301. doi: 10.7498/aps.64.087301
    [11] 陈泳屹, 秦莉, 佟存柱, 王立军. 金属-介质光栅结构表面等离子体耦合效率的模拟研究. 物理学报, 2013, 62(16): 167301. doi: 10.7498/aps.62.167301
    [12] 肖啸, 张志友, 肖志刚, 许德富, 邓迟. 银层超透镜光学传递函数的研究. 物理学报, 2012, 61(11): 114201. doi: 10.7498/aps.61.114201
    [13] 李巍, 王永钢, 杨伯君. 损耗对表面等离子体激元压缩态的影响. 物理学报, 2011, 60(2): 024203. doi: 10.7498/aps.60.024203
    [14] 王亚伟, 刘明礼, 刘仁杰, 雷海娜, 田相龙. Fabry-Perot腔谐振对横电波激励下亚波长一维金属光栅的异常透射性的作用. 物理学报, 2011, 60(2): 024217. doi: 10.7498/aps.60.024217
    [15] 沈云, 范定寰, 傅继武, 于国萍. 加入增益介质的表面等离子体激元耦合共振波导传输特性理论研究. 物理学报, 2011, 60(11): 117302. doi: 10.7498/aps.60.117302
    [16] 王亚伟, 刘明礼, 刘仁杰, 雷海娜, 邓晓斌. 横电波激励下亚波长一维金属光栅的异常透射性. 物理学报, 2010, 59(6): 4030-4035. doi: 10.7498/aps.59.4030
    [17] 刘炳灿, 逯志欣, 于丽. 金属和Kerr非线性介质界面上表面等离子体激元的色散关系. 物理学报, 2010, 59(2): 1180-1184. doi: 10.7498/aps.59.1180
    [18] 宋文涛, 林峰, 方哲宇, 朱星. 线性偏振光激发的错位表面等离子体激元纳米结构聚焦. 物理学报, 2010, 59(10): 6921-6926. doi: 10.7498/aps.59.6921
    [19] 黄茜, 曹丽冉, 耿卫东, 孙建, 王烁, 熊绍珍, 张晓丹, 赵颖. 功能光学纳米Ag薄膜的制备及其光学特性研究. 物理学报, 2009, 58(4): 2731-2736. doi: 10.7498/aps.58.2731
    [20] 王媛媛, 张彩虹, 马金龙, 金飙兵, 许伟伟, 康琳, 陈健, 吴培亨. 亚波长孔阵列的太赫兹波异常透射研究. 物理学报, 2009, 58(10): 6884-6888. doi: 10.7498/aps.58.6884
计量
  • 文章访问数:  5009
  • PDF下载量:  258
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-07
  • 修回日期:  2016-07-21
  • 刊出日期:  2016-10-05

/

返回文章
返回