搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电离层中释放六氟化硫效应的三维精细模拟研究

赵海生 许正文 吴振森 冯杰 吴健 徐彬 徐彤 胡艳莉

引用本文:
Citation:

电离层中释放六氟化硫效应的三维精细模拟研究

赵海生, 许正文, 吴振森, 冯杰, 吴健, 徐彬, 徐彤, 胡艳莉

A three-dimensional refined modeling for the effects of SF6 release in ionosphere

Zhao Hai-Sheng, Xu Zheng-Wen, Wu Zhen-Sen, Feng Jie, Wu Jian, Xu Bin, Xu Tong, Hu Yan-Li
PDF
导出引用
  • 传统的六氟化硫电离层释放效应研究,一般建立的是点源释放模型,仿真结果精度有限.本文开展了电离层中释放六氟化硫的三维精细效应研究,在释放物扩散方程中加入了运载器飞行速度和姿态、释放物释放速度和流量、热层风场等参量对释放物扩散过程的影响;在等离子体扩散方程中考虑了地磁倾角和沿场扩散项对人工扰动结构等关键参数的影响,将二维等离子体扩散方程扩展到三维.同时,采用射线追踪方法,研究电离层人工扰动结构对短波传播路径的影响.本文的研究结果对研究电离层的动力学过程、电离层不均匀体的生成机制和演化规律有重要意义.
    The traditional simulation model of sulfur hexafluoride ionosphere release is a simple point-source model and the simulation precision is not high. The three-dimensional refined simulation model of rocket SF6 release is established in this paper, in which the rocket pose and velocity, gas injection velocity and flow, and wind velocity are all taken into account in the diffusion equation. Meanwhile, the influences of geomagnetic inclination and the field diffusion on artificial disturbance form are considered in the plasma diffusion equation, and the two-dimensional plasma diffusion equation is extended to three-dimensional case. The ray tracing method is used to study the influence of ionospheric artificial disturbance on the short wave propagation path. The research results of the ionosphere kinetics process, ionospheric uneven body generation mechanism and evolution are of great significance.
      通信作者: 吴振森, wuzhs@mail.xidian.edu.cn
    • 基金项目: 国家自然科学基金(批准号:41104102)资助的课题.
      Corresponding author: Wu Zhen-Sen, wuzhs@mail.xidian.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41104102).
    [1]

    Howard D E, John F B, Edward R M, Cooper C D 1956 J. Geophys. Res. 61 82

    [2]

    Klobuchar J A, Abdu M A 1989 J. Geophys. Res.:Space Phys. 94 2721

    [3]

    Gurnett D A, Anderson R R, Bernhardt P A 1986 J. Geophys. Res. Lett. 13 644

    [4]

    Bernhardt P A, Rousseldupre R A, Pongratz M B 1987 J. Geophys. Res.:Space Phys. 92 5777

    [5]

    Huba J D, Bernhardt P A 1992 J. Geophys. Res.:Space Phys. 97 11

    [6]

    Bernhardt P A, Huba J D 1993 J. Geophys. Res. 98 1613

    [7]

    Wescott E M, Stenbaek-Nielsen H C, Hampton D L 1994 J. Geophys. Res. 99 2145

    [8]

    Bernhardt P A, Baumgardner J B, BhattA N 2011 IEEE Trans. Plasma Sci. 39 2774

    [9]

    Joshi D, Groves K, McNeil W 1997 Modeling the High Frequency Propagation Environment in Metal Oxide Space Cloud Experiment (American:Elsevier Science Inc.) p174

    [10]

    Caton R G, Pederson T R, Parris R T, Groves K M, Bernhardt P A, Cannon P S 2013 American Geophysical Union, Fall Meeting, Moscone, American, December 9-13, 2013#SA21A-2011

    [11]

    Natasha J B, Paul C, Matthew A, Ronald C, Keith G, Todd P, Richard P, Su Y J, et al. 2014 Proceedings of the XXXIst URSI General Assembly and Scientific Symposium Beijing, Chinese, August 17-23, 2014 p1362

    [12]

    Groves K M, Caton R G, Pedersen T R, Parris R T, Su Y J, Cannon P S, Natasha J B, Angling M J, Retterer J M 2013 American Geophysical Union, Fall Meeting Moscone, American, December 9-13, 2013#SA23B-05

    [13]

    Bernhardt P A 1979 J. Geophys. Res. 84 4341

    [14]

    Bernhardt P A 1984 J. Geophys. Res. 89 3929

    [15]

    Bernhardt P A 1979 J. Geophys. Res. 84 793

    [16]

    Bernhardt P A 1982 J. Geophys. Res. 87 7539

    [17]

    Scales W A, Bernhardt P A 1991 J. Geophys. Res. 96 13815

    [18]

    Hu Y G, Zhang Y N, Zhao Z Y 2010 Acta Phys. Sin. 59 8293 (in Chinese)[胡耀垓, 张援农, 赵正予2010物理学报59 8293]

    [19]

    Hu Y G, Zhao Z Y, Zhang Y N 2011 J. Geophys. Res. 116 doi:10.1029/2011JA016438

    [20]

    Huang W G, Gu S F 2006 J. Space Sci. 28 81(in Chinese)[黄文耿, 古士芬2006空间科学学报28 81]

    [21]

    Schunk R W, Szuszczewicz E P 1991 J. Geophys. Res. 96 1337

    [22]

    Gatsonis N A, Hastings D E 1991 J. Geophys. Res. 96 7623

    [23]

    Bernhardt P A 1988 J. Geophys. Res. 93 8696

    [24]

    Bernhardt P A 1987 J. Geophys. Res. 92 4617

    [25]

    Haselgrove J 1955 Proc. Phys. Soc. 23 355

    [26]

    John M K 1968 Radio Sci. l3 1

  • [1]

    Howard D E, John F B, Edward R M, Cooper C D 1956 J. Geophys. Res. 61 82

    [2]

    Klobuchar J A, Abdu M A 1989 J. Geophys. Res.:Space Phys. 94 2721

    [3]

    Gurnett D A, Anderson R R, Bernhardt P A 1986 J. Geophys. Res. Lett. 13 644

    [4]

    Bernhardt P A, Rousseldupre R A, Pongratz M B 1987 J. Geophys. Res.:Space Phys. 92 5777

    [5]

    Huba J D, Bernhardt P A 1992 J. Geophys. Res.:Space Phys. 97 11

    [6]

    Bernhardt P A, Huba J D 1993 J. Geophys. Res. 98 1613

    [7]

    Wescott E M, Stenbaek-Nielsen H C, Hampton D L 1994 J. Geophys. Res. 99 2145

    [8]

    Bernhardt P A, Baumgardner J B, BhattA N 2011 IEEE Trans. Plasma Sci. 39 2774

    [9]

    Joshi D, Groves K, McNeil W 1997 Modeling the High Frequency Propagation Environment in Metal Oxide Space Cloud Experiment (American:Elsevier Science Inc.) p174

    [10]

    Caton R G, Pederson T R, Parris R T, Groves K M, Bernhardt P A, Cannon P S 2013 American Geophysical Union, Fall Meeting, Moscone, American, December 9-13, 2013#SA21A-2011

    [11]

    Natasha J B, Paul C, Matthew A, Ronald C, Keith G, Todd P, Richard P, Su Y J, et al. 2014 Proceedings of the XXXIst URSI General Assembly and Scientific Symposium Beijing, Chinese, August 17-23, 2014 p1362

    [12]

    Groves K M, Caton R G, Pedersen T R, Parris R T, Su Y J, Cannon P S, Natasha J B, Angling M J, Retterer J M 2013 American Geophysical Union, Fall Meeting Moscone, American, December 9-13, 2013#SA23B-05

    [13]

    Bernhardt P A 1979 J. Geophys. Res. 84 4341

    [14]

    Bernhardt P A 1984 J. Geophys. Res. 89 3929

    [15]

    Bernhardt P A 1979 J. Geophys. Res. 84 793

    [16]

    Bernhardt P A 1982 J. Geophys. Res. 87 7539

    [17]

    Scales W A, Bernhardt P A 1991 J. Geophys. Res. 96 13815

    [18]

    Hu Y G, Zhang Y N, Zhao Z Y 2010 Acta Phys. Sin. 59 8293 (in Chinese)[胡耀垓, 张援农, 赵正予2010物理学报59 8293]

    [19]

    Hu Y G, Zhao Z Y, Zhang Y N 2011 J. Geophys. Res. 116 doi:10.1029/2011JA016438

    [20]

    Huang W G, Gu S F 2006 J. Space Sci. 28 81(in Chinese)[黄文耿, 古士芬2006空间科学学报28 81]

    [21]

    Schunk R W, Szuszczewicz E P 1991 J. Geophys. Res. 96 1337

    [22]

    Gatsonis N A, Hastings D E 1991 J. Geophys. Res. 96 7623

    [23]

    Bernhardt P A 1988 J. Geophys. Res. 93 8696

    [24]

    Bernhardt P A 1987 J. Geophys. Res. 92 4617

    [25]

    Haselgrove J 1955 Proc. Phys. Soc. 23 355

    [26]

    John M K 1968 Radio Sci. l3 1

  • [1] 朱肖丽, 胡耀垓, 赵正予, 张援农. 钡和铯释放的电离层扰动效应对比. 物理学报, 2020, 69(2): 029401. doi: 10.7498/aps.69.20191266
    [2] 罗欢, 肖卉. 电离层回波谱展宽机理分析及频谱锐化方法. 物理学报, 2019, 68(21): 219401. doi: 10.7498/aps.68.20190887
    [3] 赵海生, 许正文, 徐朝辉, 薛昆, 郑延帅, 谢守志, 冯杰, 吴健. 基于化学物质释放的电离层闪烁抑制方法研究. 物理学报, 2019, 68(10): 109401. doi: 10.7498/aps.68.20182281
    [4] 赵海生, 徐朝辉, 高敬帆, 许正文, 吴健, 冯杰, 徐彬, 薛昆, 李辉, 马征征. 电离层中性气体释放的早期试验效应研究. 物理学报, 2018, 67(1): 019401. doi: 10.7498/aps.67.20171620
    [5] 吴静, 周志为, 闫旭. 电力线谐波辐射在分层各向异性电离层中的传播特点. 物理学报, 2015, 64(19): 194101. doi: 10.7498/aps.64.194101
    [6] 常珊珊, 倪彬彬, 赵正予, 汪枫, 李金星, 赵晶晶, 顾旭东, 周晨. 基于试验粒子模拟的电离层人工调制激发的极低频和甚低频波对磁层高能电子的散射效应. 物理学报, 2014, 63(6): 069401. doi: 10.7498/aps.63.069401
    [7] 胡耀垓, 赵正予, 张援农. 不同释放高度的化学物质的电离层扰动特性. 物理学报, 2013, 62(20): 209401. doi: 10.7498/aps.62.209401
    [8] 盛峥. 电离层电子总含量不同时间尺度的预报模型研究. 物理学报, 2012, 61(21): 219401. doi: 10.7498/aps.61.219401
    [9] 汪枫, 赵正予, 常珊珊, 倪彬彬, 顾旭东. 低纬电离层人工调制所激发的ELF波射线追踪. 物理学报, 2012, 61(19): 199401. doi: 10.7498/aps.61.199401
    [10] 胡耀垓, 赵正予, 张援农. 电离层钡云释放早期动力学行为的数值模拟. 物理学报, 2012, 61(8): 089401. doi: 10.7498/aps.61.089401
    [11] 洪振杰, 刘荣建, 郭鹏, 董乃铭. 非球对称电离层掩星数据反演. 物理学报, 2011, 60(12): 129401. doi: 10.7498/aps.60.129401
    [12] 宋健, 杨联贵, 刘全生. 强迫耗散与效应地形效应作用下的非线性Rossby波包. 物理学报, 2011, 60(10): 104701. doi: 10.7498/aps.60.104701
    [13] 胡耀垓, 赵正予, 项薇, 张援农. 人工电离层洞形态调制及其对短波传播的影响. 物理学报, 2011, 60(9): 099402. doi: 10.7498/aps.60.099402
    [14] 徐贤胜, 洪振杰, 郭鹏, 刘荣建. COSMIC掩星电离层资料反演以及结果验证. 物理学报, 2010, 59(3): 2163-2168. doi: 10.7498/aps.59.2163
    [15] 胡耀垓, 赵正予, 张援农. 几种典型化学物质的电离层释放效应研究. 物理学报, 2010, 59(11): 8293-8303. doi: 10.7498/aps.59.8293
    [16] 石润, 赵正予. 磁倾角对电离层Alfven谐振器影响的初步研究. 物理学报, 2009, 58(7): 5111-5117. doi: 10.7498/aps.58.5111
    [17] 黄朝松, 李钧, M .C. KELLEY. 大气重力波产生中纬电离层不均匀体的理论. 物理学报, 1994, 43(9): 1476-1485. doi: 10.7498/aps.43.1476
    [18] 潘威炎. 关于地球曲率对低频电波电离层反射系数计算的影响. 物理学报, 1981, 30(5): 661-670. doi: 10.7498/aps.30.661
    [19] 陈茂康, 朱恩隆, 梁百先. 公历一九三六年六月十九日上海日偏蚀时天空电离层游离程度之测量. 物理学报, 1936, 2(2): 169-177. doi: 10.7498/aps.2.169
    [20] 陈茂康, 张煦. 研究中国天空电离层之初草报告. 物理学报, 1935, 1(3): 92-100. doi: 10.7498/aps.1.92
计量
  • 文章访问数:  4956
  • PDF下载量:  174
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-10
  • 修回日期:  2016-07-07
  • 刊出日期:  2016-10-05

/

返回文章
返回