搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金纳米柱阵列表面等离子体激元与J-聚集分子强耦合作用

赵泽宇 刘晋侨 李爱武 徐颖

引用本文:
Citation:

金纳米柱阵列表面等离子体激元与J-聚集分子强耦合作用

赵泽宇, 刘晋侨, 李爱武, 徐颖

Strong coupling between J-aggregates and surface plasmon polaritons in gold nanodisks arrays

Zhao Ze-Yu, Liu Jin-Qiao, Li Ai-Wu, Xu Ying
PDF
导出引用
  • 采用脱模工艺制备了表面光滑的金纳米柱阵列结构,这种加工方法操作简单、可重复性强,可以将形貌相同的纳米柱阵列结构大批量复制到不同衬底上.采用这种金纳米柱阵列结构激发表面等离子体激元并实现了其与J-聚集染料分子的强耦合作用.在所制备的杂化耦合体系中,观测到了200 meV的拉比劈裂值.进一步通过调节金纳米柱阵列的周期来改变耦合强度,在反射谱中观测到了强耦合存在的标志性实验证据:耦合杂化态对应能量的反交叉曲线.这种简单并可以大批量制备的强耦合杂化体系对于促进强耦合作用在纳米等离子体器件中的广泛应用具有积极意义.
    Recently, much attention has been paid to an interesting subject, i.e., the interactions between surface plasmon polaritons (SPPs) and molecules. The interactions between SPPs and molecules often appear in two opposite cases, namely weak and strong coupling. When the interaction is weak, the absorption maximum simply coincides with the electronic transition energy of the molecule. In the weak coupling regime, the wave functions of the molecule and the SPP modes are considered to be unperturbed, only leading to enhancement of the absorption or fluorescence of the molecules. On the other hand, when the interaction is strong enough, the SPPs and molecules can form a coherent hybrid object, thus the excitation energy is shared by and oscillates between the SPPs and molecular systems (Rabi oscillations), leading to vacuum Rabi splitting of energy levels at the resonance frequency. Due to the fact that both the SPPs and the molecule components can be confined into the nanometer scale, the work on strong coupling with SPPs offers a very good opportunity to realize nanoplasmonic devices, such as thresholdless laser and room temperature B-E condensates.In this work, we investigate a hybrid system formed by strong coupled gold nanodisk arrays and J-aggregate molecules. Smooth gold nanodisk arrays are fabricated by a template-stripping process. In such an experimentally simple replicate process, mass-production of gold nanodisk arrays with the same morphology can be transferred from patterned indium tin oxides (ITO) glass. The structures on ITO glass are milled with a focused ion beam. Periodic gold nanodisk arrays have the capability of converting light into SPPs modes, resulting in a significant field confinement at the patterned metal surface. In particular, the desired SPP mode can be chosen by changing the nanodisk array period to match the absorbance peak of the J-aggregate molecule. On the other hand, J-aggregate molecule is chosen due to its large dipole moments and absorption coefficient, which makes it attractive for designing the strong exciton-plasmon interaction system. The strong coupled system is formed when the J-aggregate molecule is spin-coated on the gold nanodisk arrays. Through reflection measurements, Rabi splitting energy value 200 meV is observed when the period of the nanodisk array is 350 nm. Through tuning the coupling strength by changing the lattice period from 250 nm to 450 nm, the typical signature of strong coupling:anticrossing of energies is found in reflection spectra. This simple replicate process for strong coupling hybrid system fabrication should play an important role in designing novel ultrafast nanoplasmonic devices with coherent functionalities.
      通信作者: 徐颖, xuying1969@hotmail.com
    • 基金项目: 国家自然科学基金(批准号:31378053)资助的课题.
      Corresponding author: Xu Ying, xuying1969@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 31378053).
    [1]

    Sheng Y, Fan D H, Fu J W, Yu C P 2011 Acta Phys. Sin. 60 117302 (in Chinese)[沈云, 范定寰, 傅继武, 于国萍2011物理学报60 117302]

    [2]

    Huang Q, Cao L R, Sun J, Zhang X D, Geng W D, Xiong S Z, Zhao Y, Wang J 2009 Acta Phys. Sin. 58 1980 (in Chinese)[黄茜, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖, 王京2009物理学报58 1980]

    [3]

    Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photonics 4 83

    [4]

    Xu B B, Zhang R, Liu X Q, Wang H, Zhang Y L, Jiang H B, Wang L, Ma Z C, Ku J F, Xiao F S, Sun H B 2012 Chem. Commun. 48 1680

    [5]

    Xu B B, Ma Z C, Wang L, Zhang R, Niu L G, Yang Z, Zhang Y L, Zheng W H, Zhao B, Xu Y, Chen Q D, Xia H, Sun H B 2011 Lab on Chip 11 3347

    [6]

    Wang H, Wang H Y, Gao B R, Jiang Y, Yang Z Y, Hao Y W, Chen Q D, Du X B, Sun H B 2011 Appl. Phys. Lett. 98 251501

    [7]

    Jiang Y, Wang H Y, Wang H, Gao B R, Hao Y W, Jin Y, Chen Q D, Sun H B 2011 J. Phys. Chem. C 115 12636

    [8]

    Neogi A, Lee C W, Everitt H O, Kuroda T, Tackeuchi A, Yablonovitch E 2002 Phys. Rev. B 66 153305

    [9]

    Törmö P, Barnes W L 2015 Rep. Prog. Phys. 78 013901

    [10]

    Khitrova G, Gibbs H M, Kira M, Koch S W, Scherer A 2006 Nat. Phys. 2 81

    [11]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [12]

    Schlather A E, Large N, Urban A S, Nordlander P, Halas N J 2013 Nano Lett. 13 3281

    [13]

    Zengin G, Wersäll M, Nilsson S, Antosiewicz T J, Käll M, Shegai T 2015 Phys. Rev. Lett. 114 157401

    [14]

    Ding K, Ning C Z 2012 Light Sci. Appl. 1 e20

    [15]

    Fang Y, Sun M 2015 Light Sci. Appl. 4 e294

    [16]

    Lai Y Y, Lan Y P, Lu T C 2013 Light Sci. Appl. 2 e76

    [17]

    DeLacy B G, Miller O D, Hsu C W, Zander Z, Lacey S, Yagloski R, Fountain A W, Valdes E, Anquillare E, Soljačić M, Johnson S G, Joannopoulos J D 2015 Nano Lett. 15 2588

    [18]

    Hao Y W, Wang H Y, Jiang Y, Chen Q D, Ueno K, Wang W Q, Misawa H, Sun H B 2011 Angew. Chem. 123 7970

    [19]

    Wang H, Wang H Y, Bozzola A, Toma A, Panaro S, Raja W, Alabastri A, Wang L, Chen Q D, Xu H L, De Angelis F, Sun H B, Zaccaria R P 2016 Adv. Funct. Mater. DOI:10.1002/adfm. 201601452

    [20]

    Wang H, Toma A, Wang H Y, Bozzola A, Miele E, Haddadpour A, Veronis G, De Angelis F, Wang L, Chen Q D, Xu H L, Sun H B, Zaccaria R P 2016 Nanoscale 8 13445

    [21]

    Väkeväinen A I, Moerland R J, Rekola H T, Eskelinen A P, Martikainen J P, Kim D H, Törmö P 2014 Nano Lett. 14 1721

    [22]

    Shi L, Hakala T K, Rekola H T, Martikainen J P, Moerland R J, Törmö P 2014 Phys. Rev. Lett. 112 153002

    [23]

    Gómez D E, Lo S S, Davis T J, Hartland G V 2013 J. Phys. Chem. B 117 4340

    [24]

    Gómez D E, Vernon K C, Mulvaney P, Davis T J 2010 Nano Lett. 10 274

    [25]

    Kéna-Cohen S, Maier S A, Bradley D D C 2013 Adv. Opt. Mater. 1 827

    [26]

    Schwartz T, Hutchison J A, Genet C, Ebbesen T W 2011 Phys. Rev. Lett. 106 196405

    [27]

    Hutchison J A, Schwartz T, Genet C, Devaux E, Ebbesen T W 2012 Angew. Chem. Int. Ed. 51 1592

    [28]

    Hutchison J A, Liscio A, Schwartz T, Canaguier-Durand A, Genet C, Palermo V, Samorì P, Ebbesen T W 2013 Adv. Mater. 25 2481

    [29]

    Orgiu E, George J, Hutchison J A, Devaux E, Dayen J F, Doudin B, Stellacci F, Genet C, Schachenmayer J, Genes C, Pupillo G, Samori P, Ebbesen T W 2015 Nat. Mater. 14 1123

    [30]

    Coles D M, Somaschi N, Michetti P, Clark C, Lagoudakis P G, Savvidis P G, Lidzey D G 2014 Nat. Mater. 13 712

    [31]

    Santhosh K, Bitton O, Chuntonov L, Haran G 2016 Nat. Commun. 7 11823

    [32]

    Wang L, Li Q, Wang H Y, Huang J C, Zhang R, Chen Q D, Xu H L, Han W, Shao Z Z, Sun H B 2015 Light Sci. Appl. 4 e245

    [33]

    Wang L, Zhu S J, Wang H Y, Qu S N, Zhang Y L, Zhang J H, Chen Q D, Xu H L, Han W, Yang B, Sun H B 2014 ACS Nano 8 2541

    [34]

    Wang H, Wang H Y, Gao B R, Wang L, Yang Z Y, Du X B, Chen Q D, Song J F, Sun H B 2011 Nanoscale 3 2280

    [35]

    Gao B R, Wang H Y, Hao Y W, Fu L M, Fang H H, Jiang Y, Wang L, Chen Q D, Xia H, Pan L Y, Ma Y G, Sun H B 2010 J. Phys. Chem. B 114 128

    [36]

    Vogel N, Zieleniecki J, Koper I 2012 Nanoscale 4 3820

    [37]

    Liu Y F, Feng J, Cui H F, Zhang Y F, Yin D, Bi Y G, Song J F, Chen Q D, Sun H B 2013 Nanoscale 5 10811

    [38]

    Dintinger J, Klein S, Bustos F, Barnes W L, Ebbesen T W 2005 Phys. Rev. B 71 035424

    [39]

    Cao L, Brongersma L M 2009 Nat. Photonics 3 12

  • [1]

    Sheng Y, Fan D H, Fu J W, Yu C P 2011 Acta Phys. Sin. 60 117302 (in Chinese)[沈云, 范定寰, 傅继武, 于国萍2011物理学报60 117302]

    [2]

    Huang Q, Cao L R, Sun J, Zhang X D, Geng W D, Xiong S Z, Zhao Y, Wang J 2009 Acta Phys. Sin. 58 1980 (in Chinese)[黄茜, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖, 王京2009物理学报58 1980]

    [3]

    Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photonics 4 83

    [4]

    Xu B B, Zhang R, Liu X Q, Wang H, Zhang Y L, Jiang H B, Wang L, Ma Z C, Ku J F, Xiao F S, Sun H B 2012 Chem. Commun. 48 1680

    [5]

    Xu B B, Ma Z C, Wang L, Zhang R, Niu L G, Yang Z, Zhang Y L, Zheng W H, Zhao B, Xu Y, Chen Q D, Xia H, Sun H B 2011 Lab on Chip 11 3347

    [6]

    Wang H, Wang H Y, Gao B R, Jiang Y, Yang Z Y, Hao Y W, Chen Q D, Du X B, Sun H B 2011 Appl. Phys. Lett. 98 251501

    [7]

    Jiang Y, Wang H Y, Wang H, Gao B R, Hao Y W, Jin Y, Chen Q D, Sun H B 2011 J. Phys. Chem. C 115 12636

    [8]

    Neogi A, Lee C W, Everitt H O, Kuroda T, Tackeuchi A, Yablonovitch E 2002 Phys. Rev. B 66 153305

    [9]

    Törmö P, Barnes W L 2015 Rep. Prog. Phys. 78 013901

    [10]

    Khitrova G, Gibbs H M, Kira M, Koch S W, Scherer A 2006 Nat. Phys. 2 81

    [11]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [12]

    Schlather A E, Large N, Urban A S, Nordlander P, Halas N J 2013 Nano Lett. 13 3281

    [13]

    Zengin G, Wersäll M, Nilsson S, Antosiewicz T J, Käll M, Shegai T 2015 Phys. Rev. Lett. 114 157401

    [14]

    Ding K, Ning C Z 2012 Light Sci. Appl. 1 e20

    [15]

    Fang Y, Sun M 2015 Light Sci. Appl. 4 e294

    [16]

    Lai Y Y, Lan Y P, Lu T C 2013 Light Sci. Appl. 2 e76

    [17]

    DeLacy B G, Miller O D, Hsu C W, Zander Z, Lacey S, Yagloski R, Fountain A W, Valdes E, Anquillare E, Soljačić M, Johnson S G, Joannopoulos J D 2015 Nano Lett. 15 2588

    [18]

    Hao Y W, Wang H Y, Jiang Y, Chen Q D, Ueno K, Wang W Q, Misawa H, Sun H B 2011 Angew. Chem. 123 7970

    [19]

    Wang H, Wang H Y, Bozzola A, Toma A, Panaro S, Raja W, Alabastri A, Wang L, Chen Q D, Xu H L, De Angelis F, Sun H B, Zaccaria R P 2016 Adv. Funct. Mater. DOI:10.1002/adfm. 201601452

    [20]

    Wang H, Toma A, Wang H Y, Bozzola A, Miele E, Haddadpour A, Veronis G, De Angelis F, Wang L, Chen Q D, Xu H L, Sun H B, Zaccaria R P 2016 Nanoscale 8 13445

    [21]

    Väkeväinen A I, Moerland R J, Rekola H T, Eskelinen A P, Martikainen J P, Kim D H, Törmö P 2014 Nano Lett. 14 1721

    [22]

    Shi L, Hakala T K, Rekola H T, Martikainen J P, Moerland R J, Törmö P 2014 Phys. Rev. Lett. 112 153002

    [23]

    Gómez D E, Lo S S, Davis T J, Hartland G V 2013 J. Phys. Chem. B 117 4340

    [24]

    Gómez D E, Vernon K C, Mulvaney P, Davis T J 2010 Nano Lett. 10 274

    [25]

    Kéna-Cohen S, Maier S A, Bradley D D C 2013 Adv. Opt. Mater. 1 827

    [26]

    Schwartz T, Hutchison J A, Genet C, Ebbesen T W 2011 Phys. Rev. Lett. 106 196405

    [27]

    Hutchison J A, Schwartz T, Genet C, Devaux E, Ebbesen T W 2012 Angew. Chem. Int. Ed. 51 1592

    [28]

    Hutchison J A, Liscio A, Schwartz T, Canaguier-Durand A, Genet C, Palermo V, Samorì P, Ebbesen T W 2013 Adv. Mater. 25 2481

    [29]

    Orgiu E, George J, Hutchison J A, Devaux E, Dayen J F, Doudin B, Stellacci F, Genet C, Schachenmayer J, Genes C, Pupillo G, Samori P, Ebbesen T W 2015 Nat. Mater. 14 1123

    [30]

    Coles D M, Somaschi N, Michetti P, Clark C, Lagoudakis P G, Savvidis P G, Lidzey D G 2014 Nat. Mater. 13 712

    [31]

    Santhosh K, Bitton O, Chuntonov L, Haran G 2016 Nat. Commun. 7 11823

    [32]

    Wang L, Li Q, Wang H Y, Huang J C, Zhang R, Chen Q D, Xu H L, Han W, Shao Z Z, Sun H B 2015 Light Sci. Appl. 4 e245

    [33]

    Wang L, Zhu S J, Wang H Y, Qu S N, Zhang Y L, Zhang J H, Chen Q D, Xu H L, Han W, Yang B, Sun H B 2014 ACS Nano 8 2541

    [34]

    Wang H, Wang H Y, Gao B R, Wang L, Yang Z Y, Du X B, Chen Q D, Song J F, Sun H B 2011 Nanoscale 3 2280

    [35]

    Gao B R, Wang H Y, Hao Y W, Fu L M, Fang H H, Jiang Y, Wang L, Chen Q D, Xia H, Pan L Y, Ma Y G, Sun H B 2010 J. Phys. Chem. B 114 128

    [36]

    Vogel N, Zieleniecki J, Koper I 2012 Nanoscale 4 3820

    [37]

    Liu Y F, Feng J, Cui H F, Zhang Y F, Yin D, Bi Y G, Song J F, Chen Q D, Sun H B 2013 Nanoscale 5 10811

    [38]

    Dintinger J, Klein S, Bustos F, Barnes W L, Ebbesen T W 2005 Phys. Rev. B 71 035424

    [39]

    Cao L, Brongersma L M 2009 Nat. Photonics 3 12

  • [1] 李远芳, 姜园, 赵磊. 基于改进强耦合振子的微弱脉冲信号检测方法. 物理学报, 2024, 73(4): 040503. doi: 10.7498/aps.73.20231343
    [2] 闫玮植, 范青, 杨鹏飞, 李刚, 张鹏飞, 张天才. 微光学腔内单原子的俘获及其耦合强度的精确调控. 物理学报, 2023, 72(11): 114202. doi: 10.7498/aps.72.20222220
    [3] 祁云平, 贾迎君, 张婷, 丁京徽, 尉净雯, 王向贤. 基于Fano共振的金属-绝缘体-金属-石墨烯纳米管混合结构动态可调折射率传感器. 物理学报, 2022, 71(17): 178101. doi: 10.7498/aps.71.20220652
    [4] 赵世杭, 张元, 吕思远, 程少博, 郑长林, 王鹿霞. 电子能量损失谱探测银纳米棒与介质层强耦合的数值模拟. 物理学报, 2022, 71(14): 147302. doi: 10.7498/aps.71.20220194
    [5] 闫晓宏, 牛亦杰, 徐红星, 魏红. 单个等离激元纳米颗粒和纳米间隙结构与量子发光体的强耦合. 物理学报, 2022, 71(6): 067301. doi: 10.7498/aps.71.20211900
    [6] 张萌徕, 覃赵福, 陈卓. 基于开口环阵列结构的表面晶格共振产生及二次谐波增强. 物理学报, 2021, 70(5): 054206. doi: 10.7498/aps.70.20201424
    [7] 郭绮琪, 陈溢杭. 基于介电常数近零模式与间隙表面等离激元强耦合的增强非线性光学效应. 物理学报, 2021, 70(18): 187303. doi: 10.7498/aps.70.20210290
    [8] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用. 物理学报, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [9] 段雪珂, 任娟娟, 郝赫, 张淇, 龚旗煌, 古英. 微纳光子结构中光子和激子相互作用. 物理学报, 2019, 68(14): 144201. doi: 10.7498/aps.68.20190269
    [10] 陈颖, 谢进朝, 周鑫德, 张灿, 杨惠, 李少华. 基于表面等离子体诱导透明的半封闭T形波导侧耦合圆盘腔的波导滤波器. 物理学报, 2019, 68(23): 237301. doi: 10.7498/aps.68.20191068
    [11] 李志明, 王玺, 聂劲松. 飞秒激光烧蚀硅材料表面形成周期波纹形貌研究. 物理学报, 2017, 66(10): 105201. doi: 10.7498/aps.66.105201
    [12] 王平, 胡德骄, 肖钰斐, 庞霖. 金属光栅对表面等离子体波的辐射抑制研究. 物理学报, 2015, 64(8): 087301. doi: 10.7498/aps.64.087301
    [13] 陈泳屹, 秦莉, 佟存柱, 王立军. 金属-介质光栅结构表面等离子体耦合效率的模拟研究. 物理学报, 2013, 62(16): 167301. doi: 10.7498/aps.62.167301
    [14] 肖啸, 张志友, 肖志刚, 许德富, 邓迟. 银层超透镜光学传递函数的研究. 物理学报, 2012, 61(11): 114201. doi: 10.7498/aps.61.114201
    [15] 陈翔, 米贤武. 二能级原子与高品质因子腔的自发辐射特性. 物理学报, 2011, 60(10): 104204. doi: 10.7498/aps.60.104204
    [16] 李巍, 王永钢, 杨伯君. 损耗对表面等离子体激元压缩态的影响. 物理学报, 2011, 60(2): 024203. doi: 10.7498/aps.60.024203
    [17] 沈云, 范定寰, 傅继武, 于国萍. 加入增益介质的表面等离子体激元耦合共振波导传输特性理论研究. 物理学报, 2011, 60(11): 117302. doi: 10.7498/aps.60.117302
    [18] 刘炳灿, 逯志欣, 于丽. 金属和Kerr非线性介质界面上表面等离子体激元的色散关系. 物理学报, 2010, 59(2): 1180-1184. doi: 10.7498/aps.59.1180
    [19] 宋文涛, 林峰, 方哲宇, 朱星. 线性偏振光激发的错位表面等离子体激元纳米结构聚焦. 物理学报, 2010, 59(10): 6921-6926. doi: 10.7498/aps.59.6921
    [20] 黄茜, 曹丽冉, 耿卫东, 孙建, 王烁, 熊绍珍, 张晓丹, 赵颖. 功能光学纳米Ag薄膜的制备及其光学特性研究. 物理学报, 2009, 58(4): 2731-2736. doi: 10.7498/aps.58.2731
计量
  • 文章访问数:  6056
  • PDF下载量:  434
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-11
  • 修回日期:  2016-07-19
  • 刊出日期:  2016-12-05

/

返回文章
返回