搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柔性杆与凸轮斜碰撞特性分析

杨永锋 冯海波 陈虎 仵敏娟

引用本文:
Citation:

柔性杆与凸轮斜碰撞特性分析

杨永锋, 冯海波, 陈虎, 仵敏娟

Dynamical analysis of the flexible beam-cam oblique-impact system

Yang Yong-Feng, Feng Hai-Bo, Chen Hu, Wu Min-Juan
PDF
导出引用
  • 在计入柔性杆横向变形及其二阶耦合量的条件下,利用Hamilton最小作用原理建立柔性杆与凸轮斜碰撞系统的动力学方程,提出了柔性杆与凸轮碰撞点的确定方法,实现了柔性杆自由下落后的碰撞前、碰撞过程和碰撞后3个阶段的动力学行为仿真.通过分析柔性杆的碰撞运动规律,发现杆的柔性、大范围运动和碰撞三者间存在耦合,碰撞后柔性杆的转角随时间波动变化,转角波动的幅值随时间增大总趋势在减小,但规律性较差.
    A mechanical system is often modeled as a multi-body system with non-smoothness. Typical examples are the noises and vibrations produced in railway brakes, impact print hammers, or chattering of machine tools. These effects are due to the non-smooth characteristics such as clearance, impact, intermittent contact, dry friction, or a combination of these effects. In a non-smooth system, neither of the time evolutions of the displacements and the velocities are requested to be smooth. Beam-cam device is an important kind of impacting system which has a wide range of applications. The rotation of the cam at some constant speed provides a force to operate the beam. The most common example is the valve trains of internal combustion engines, where the rotation of the cam imparts the proper motion to the engine valves through the follower while a spring provides a restoring force necessary to maintain contact between the components. The impact on beam-cam is a typical oblique-impact. It has been observed that under variations of the cam rotational speed and other parameters, the follower can exhibit a complex behavior including bifurcations and chaos. We study a rigid flexible coupling system, which moves in the horizontal plane, and is composed of the hub, the flexible beam and a cam with constant rotating speed. Considering the second-order coupling of axial displacement which is caused by the transverse deformation of the beam, the kinetic energy and the potential energy of the whole system are calculated. The governing equations of the flexible beam-cam oblique-impact system are derived from Hamilton theory, when taking into account the second-order coupling quantity of axial displacement caused by the transverse displacement of the beam. Hertz contact theory and nonlinear damping theories are used to establish the contact model. By the equivalent conversion method in structural mechanics, the deflection curve of flexible beam is calculated. The acceleration at the contact point of beam and cam is used to judge whether they are separate, or contacted, or impacting. Due to the flexibility of beam, the impact point of beam-cam always changes with time and speed. We propose a method, which is a trial calculation method, to determine the impact point of flexible beam-cam. Simulation results show that there is transverse vibration at the free end of flexible beam. There is inter-coupling among the flexible of beam, the large range of motion, and the impact. After the impact, the rotation angle of the flexible beam changes with time and the angle amplitude mainly decreases with the increase of the time, but the regularity is poor.
      通信作者: 杨永锋, yyf@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11272257,11672237)和西北工业大学翱翔新星资助的课题.
      Corresponding author: Yang Yong-Feng, yyf@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11272257, 11672237) and the Aoxiang New Star Program in Northwestern Polytechnical University, China.
    [1]

    Pfeiffer F, Glocker C 2000 PMM-J. Appl. Math. Mech. 64 773

    [2]

    Han Y, Yang J K, Koji M 2011 Chin. J. Mech. Eng. 24 1045

    [3]

    Li H G, Cao Z Q, Lu H F, Shen Q S 2003 Appl. Phys. Lett. 83 2757

    [4]

    Alzate R, di Bernardo M, Montanaro U, Santini S 2007 Nonlinear Dyn. 50 409

    [5]

    Wu X, Wen G L, Xu H D, He L P 2015 Acta Phys. Sin. 64 200504 (in Chinese)[伍新, 文桂林, 徐慧东, 何莉萍2015物理学报 64 200504]

    [6]

    He X S, Deng F Y, Wu G Y, Wang R 2010 Acta Phys. Sin. 59 25 (in Chinese)[和兴锁, 邓峰岩, 吴根勇, 王睿2010物理学报 59 25]

    [7]

    Ding H, Chen L Q, Yang S P 2012 J. Sound Vib. 331 2426

    [8]

    Ding H, Chen L Q 2010 J. Sound Vib. 329 3484

    [9]

    Hua W J, Zhang D G 2007 J. Mech. Eng. 43 222(in Chinese)[华卫江, 章定国2007机械工程学报 43 222]

    [10]

    Shen Y N, Stronge W J 2011 Eur. J. Mech. A:-Solid. 30 457

  • [1]

    Pfeiffer F, Glocker C 2000 PMM-J. Appl. Math. Mech. 64 773

    [2]

    Han Y, Yang J K, Koji M 2011 Chin. J. Mech. Eng. 24 1045

    [3]

    Li H G, Cao Z Q, Lu H F, Shen Q S 2003 Appl. Phys. Lett. 83 2757

    [4]

    Alzate R, di Bernardo M, Montanaro U, Santini S 2007 Nonlinear Dyn. 50 409

    [5]

    Wu X, Wen G L, Xu H D, He L P 2015 Acta Phys. Sin. 64 200504 (in Chinese)[伍新, 文桂林, 徐慧东, 何莉萍2015物理学报 64 200504]

    [6]

    He X S, Deng F Y, Wu G Y, Wang R 2010 Acta Phys. Sin. 59 25 (in Chinese)[和兴锁, 邓峰岩, 吴根勇, 王睿2010物理学报 59 25]

    [7]

    Ding H, Chen L Q, Yang S P 2012 J. Sound Vib. 331 2426

    [8]

    Ding H, Chen L Q 2010 J. Sound Vib. 329 3484

    [9]

    Hua W J, Zhang D G 2007 J. Mech. Eng. 43 222(in Chinese)[华卫江, 章定国2007机械工程学报 43 222]

    [10]

    Shen Y N, Stronge W J 2011 Eur. J. Mech. A:-Solid. 30 457

  • [1] 陈琼, 薛春霞, 王勋. 基于温度效应的无限长压电圆杆纵波分析. 物理学报, 2021, 70(3): 035201. doi: 10.7498/aps.70.20200774
    [2] 侯星宇, 郭传飞. 柔性压力传感器的原理及应用. 物理学报, 2020, 69(17): 178102. doi: 10.7498/aps.69.20200987
    [3] 王勇, 梅凤翔, 肖静, 郭永新. 一类可用Hamilton-Jacobi方法求解的非保守Hamilton系统. 物理学报, 2017, 66(5): 054501. doi: 10.7498/aps.66.054501
    [4] 王检耀, 刘铸永, 洪嘉振. 基于交互模式的柔性体接触碰撞动力学建模方法. 物理学报, 2017, 66(15): 154501. doi: 10.7498/aps.66.154501
    [5] 刘延柱, 薛纭. 基于高斯原理的Cosserat弹性杆动力学模型. 物理学报, 2015, 64(4): 044601. doi: 10.7498/aps.64.044601
    [6] 冯雪, 陆炳卫, 吴坚, 林媛, 宋吉舟, 宋国锋, 黄永刚. 可延展柔性无机微纳电子器件原理与研究进展. 物理学报, 2014, 63(1): 014201. doi: 10.7498/aps.63.014201
    [7] 方建士, 章定国. 旋转内接悬臂梁的刚柔耦合动力学特性分析. 物理学报, 2013, 62(4): 044501. doi: 10.7498/aps.62.044501
    [8] 王从庆, 吴鹏飞, 周鑫. 基于最小关节力矩优化的自由浮动空间刚柔耦合机械臂混沌动力学建模与控制. 物理学报, 2012, 61(23): 230503. doi: 10.7498/aps.61.230503
    [9] 和兴锁, 李雪华, 邓峰岩. 平面柔性梁的刚-柔耦合动力学特性分析与仿真. 物理学报, 2011, 60(2): 024502. doi: 10.7498/aps.60.024502
    [10] 张建文, 李金峰, 吴润衡. 强阻尼非线性热弹耦合杆系统的全局吸引子. 物理学报, 2011, 60(7): 070205. doi: 10.7498/aps.60.070205
    [11] 孙伟峰, 李美成, 赵连城. 窄带隙超晶格中载流子俄歇寿命和碰撞电离率的第一性原理研究. 物理学报, 2010, 59(8): 5661-5666. doi: 10.7498/aps.59.5661
    [12] 丁光涛. Hamilton系统Noether理论的新型逆问题. 物理学报, 2010, 59(3): 1423-1427. doi: 10.7498/aps.59.1423
    [13] 丁光涛. Whittaker方程的Hamilton化. 物理学报, 2010, 59(12): 8326-8329. doi: 10.7498/aps.59.8326
    [14] 宋柏, 吴晶, 过增元. 基于热质理论的Hamilton原理. 物理学报, 2010, 59(10): 7129-7134. doi: 10.7498/aps.59.7129
    [15] 薛纭, 翁德玮. 超细长弹性杆动力学的Gauss原理. 物理学报, 2009, 58(1): 34-39. doi: 10.7498/aps.58.34
    [16] 杨伟伟, 文玉梅, 李 平, 卞雷祥. GMM/弹性板/PZT层状复合结构的纵振磁电响应. 物理学报, 2008, 57(7): 4545-4551. doi: 10.7498/aps.57.4545
    [17] 查学军, 韩申生, 徐至展, 王 燕. 适用于中等耦合等离子体的碰撞算子. 物理学报, 2006, 55(6): 2825-2829. doi: 10.7498/aps.55.2825
    [18] 杨 威, 蔡晓红, 于得洋. 紧耦合方法研究离子原子碰撞的单俘获过程. 物理学报, 2005, 54(5): 2128-2132. doi: 10.7498/aps.54.2128
    [19] 颜学庆, 方家驯, 陈佳洱. 杆型SFRFQ结构的研究. 物理学报, 2002, 51(6): 1153-1155. doi: 10.7498/aps.51.1153
    [20] 黄矛, 刘克玲. 电感耦合氩等离子体中的碰撞截面和输运系数. 物理学报, 1987, 36(5): 630-639. doi: 10.7498/aps.36.630
计量
  • 文章访问数:  4905
  • PDF下载量:  233
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-25
  • 修回日期:  2016-09-01
  • 刊出日期:  2016-12-05

/

返回文章
返回