搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

展向旋转平面库埃特湍流瞬时场的五分解方法

盖杰 刘泽宇 罗佳奇 蔡庆东 夏振华

引用本文:
Citation:

展向旋转平面库埃特湍流瞬时场的五分解方法

盖杰, 刘泽宇, 罗佳奇, 蔡庆东, 夏振华

Penta-decomposition of instantaneous field in spanwise-rotating turbulent plane Couette flow

Gai Jie, Liu Ze-Yu, Luo Jia-Qi, Cai Qing-Dong, Xia Zhen-Hua
PDF
导出引用
  • 展向旋转平面库埃特湍流是旋转系统下壁湍流研究的经典问题,并且此湍流问题中的大尺度涡卷(roll cells)结构也受到广泛关注.本文采用五分解方法将存在二次流的瞬时场分解为五部分,包括平均流场、二次流场的流向和横向部分以及剩余场的流向和横向部分.通过五分解法,可以掌握湍动能各分量在能量平衡和能量传递方面的重要机制.研究结果表明:二次流和剩余场的流向运动(横向运动)是通过二次流涡量与剩余场剪应力相关项进行能量传递,二次流(剩余场)的流向运动和横向运动之间是通过旋转项进行能量传递;此外,剩余场的流向和横向运动之间还通过压力与应变率相关的再分配项进行能量传递;对于剩余场流向部分,在一定的旋转强度范围内,通过二次流涡量与剩余场剪应力相关项从二次流流向部分获取的能量大于从平均流获取的能量,说明二次流流向运动对剩余场流向运动有很大影响.
    Spanwise-rotating turbulent plane Couette flow (RPCF) is one of the fundamental prototypes for wall-bounded turbulent flows in rotating reference frames. In this turbulent problem, there are large-scale roll cells which are widely studied. In this paper, a penta-decomposition method is proposed to separate the instantaneous velocity and the total kinetic energy into five parts, i.e., a mean part, a streamwise part and a cross-flow part of the secondary flow, and a streamwise part and a cross-flow part of the residual field. The transport equations for the last four shares, which contribute the total turbulent kinetic energy, are derived. According to these transport equations, the mechanisms of energy transfer among different fractions of turbulent kinetic energy can be revealed clearly. Our objective is to explore the energy balance and transfer among different fractions of the turbulent kinetic energy in RPCF based on a series of direct numerical simulation databases at a Reynolds number Rew=Uwh/=1300 (here, Uw is half of the wall velocity difference, and h is the channel half-width) and rotation number Ro=2zh/Uw (z is the constant angular velocity in the spanwise direction) in a range of 0Ro0.9. The results show that the energy is transferred between the streamwise part/cross-flow part of secondary flows and the residual field through the correlation between the vorticity of secondary flows and the shear stress of residual field. The rotation term acts as a bridge to transfer the energy between the streamwise part and the cross-flow part of either the secondary flows or the residual field. Moreover, pressure-strain redistribution term also plays an important role in the energy transfer between streamwise part and cross-flow part in residual field. For the streamwise part of residual field, in certain rotate rates, the energy obtained from the streamwise part of secondary flows by the correlation between the vorticity of secondary flows and the shear stress of residual field is larger than that obtained from mean flow through mean shear, implying that the streamwise motions of secondary flows have a significant influence on the streamwise motions of residual field.
      通信作者: 蔡庆东, caiqd@pku.edu.cn;xiazh1006@gmail.com ; 夏振华, caiqd@pku.edu.cn;xiazh1006@gmail.com
    • 基金项目: 国家自然科学基金(批准号:11521091,11272013,11302006)资助的课题.
      Corresponding author: Cai Qing-Dong, caiqd@pku.edu.cn;xiazh1006@gmail.com ; Xia Zhen-Hua, caiqd@pku.edu.cn;xiazh1006@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11521091, 11272013, 11302006).
    [1]

    Tillmark N, Alfredsson P H 1996 Proceedings of the Sixth European Turbulence Conference Lausanne, Switzerland, July 2-5, 1996 p391

    [2]

    Bech K H, Andersson H I 1996 Proceedings of the Sixth European Turbulence Conference Lausanne, Switzerland, July 2-5, 1996 p91

    [3]

    Bech K H, Andersson H I 1996 J. Fluid Mech. 317 195

    [4]

    Bech K H, Andersson H I 1997 J. Fluid Mech. 347 289

    [5]

    Nagata M 1998 J. Fluid Mech. 358 357

    [6]

    Nagata M, Kawahara G 2004 Proceedings of the Tenth European Turbulence Conference Trondheim Norway, June 29-July 2, 2004 p391

    [7]

    Alfredsson P H, Tillmark N 2004 IUTAM Symposium on LaminarTurbulent Transition and Finite Amplitude Solutions Bristol, UK, August 9-11, 2004 p173

    [8]

    Barri M, Andersson H I 2007 Proceedings of the 11th EUROMECH European Turbulance Conference Porto, Portugal, June 25-28, 2007 p100

    [9]

    Hiwatashi K, Alfredsson P H, Tillmark N, Nagata M 2007 Phys. Fluids 19 048103

    [10]

    Barri M, Andersson H I 2010 Commun. Comput. Phys. 7 683

    [11]

    Tsukahara T, Tillmark N, Alfredsson P H 2010 J. Fluid Mech. 648 5

    [12]

    Tsukahara T 2011 J. Phys.:Conf. Ser. 318 022024

    [13]

    Lee M J, Kim J 1991 8th Symposium on Turbulent Shear Flows Munich, Germany, September 9-11, 1991 p531

    [14]

    Papavassiliou D V, Hanratty T J 1997 Int. J. Heat and Fluid Flow 18 55

    [15]

    Moser R D, Moin P 1987 J. Fluid Mech. 175 479

    [16]

    Kim J, Moin P, Moser R 1987 J. Fluid Mech. 177 133

    [17]

    Bech K H, Andersson H I 1994 First ERCOFTAC Workshop on Direct and Large-Eddy Simulation Guildford, UK, March 28-1994 p13

    [18]

    Gai J, Xia Z H, Cai Q D, Chen S Y 2016 Phys. Rev. Fluid 1 054401

    [19]

    Cai Q D, Gai J, Sun Z L, Xia Z H 2016 Int. J. Nonlinear Sci. Numer. Simul. 17 305

  • [1]

    Tillmark N, Alfredsson P H 1996 Proceedings of the Sixth European Turbulence Conference Lausanne, Switzerland, July 2-5, 1996 p391

    [2]

    Bech K H, Andersson H I 1996 Proceedings of the Sixth European Turbulence Conference Lausanne, Switzerland, July 2-5, 1996 p91

    [3]

    Bech K H, Andersson H I 1996 J. Fluid Mech. 317 195

    [4]

    Bech K H, Andersson H I 1997 J. Fluid Mech. 347 289

    [5]

    Nagata M 1998 J. Fluid Mech. 358 357

    [6]

    Nagata M, Kawahara G 2004 Proceedings of the Tenth European Turbulence Conference Trondheim Norway, June 29-July 2, 2004 p391

    [7]

    Alfredsson P H, Tillmark N 2004 IUTAM Symposium on LaminarTurbulent Transition and Finite Amplitude Solutions Bristol, UK, August 9-11, 2004 p173

    [8]

    Barri M, Andersson H I 2007 Proceedings of the 11th EUROMECH European Turbulance Conference Porto, Portugal, June 25-28, 2007 p100

    [9]

    Hiwatashi K, Alfredsson P H, Tillmark N, Nagata M 2007 Phys. Fluids 19 048103

    [10]

    Barri M, Andersson H I 2010 Commun. Comput. Phys. 7 683

    [11]

    Tsukahara T, Tillmark N, Alfredsson P H 2010 J. Fluid Mech. 648 5

    [12]

    Tsukahara T 2011 J. Phys.:Conf. Ser. 318 022024

    [13]

    Lee M J, Kim J 1991 8th Symposium on Turbulent Shear Flows Munich, Germany, September 9-11, 1991 p531

    [14]

    Papavassiliou D V, Hanratty T J 1997 Int. J. Heat and Fluid Flow 18 55

    [15]

    Moser R D, Moin P 1987 J. Fluid Mech. 175 479

    [16]

    Kim J, Moin P, Moser R 1987 J. Fluid Mech. 177 133

    [17]

    Bech K H, Andersson H I 1994 First ERCOFTAC Workshop on Direct and Large-Eddy Simulation Guildford, UK, March 28-1994 p13

    [18]

    Gai J, Xia Z H, Cai Q D, Chen S Y 2016 Phys. Rev. Fluid 1 054401

    [19]

    Cai Q D, Gai J, Sun Z L, Xia Z H 2016 Int. J. Nonlinear Sci. Numer. Simul. 17 305

  • [1] 高伟, 孙泽煜, 郭立淳, 韩珊珊, 陈斌辉, 韩庆艳, 严学文, 王勇凯, 刘继红, 董军. Ho3+离子掺杂单颗粒氟化物微米核壳结构的上转换发光特性. 物理学报, 2022, 71(3): 034207. doi: 10.7498/aps.71.20211719
    [2] 高伟, 张晶晶, 韩珊珊, 邢宇, 邵琳, 陈斌辉, 韩庆艳, 严学文, 张成云, 董军. 单颗粒NaYF4核壳结构的能量传递特性. 物理学报, 2022, 71(23): 234206. doi: 10.7498/aps.71.20221454
    [3] 苏小娜, 万英, 周芷萱, 吐沙姑·阿不都吾甫, 胡莲莲, 艾尔肯·斯地克. Na2CaSiO4:Sm3+,Eu3+荧光粉的发光特性和能量传递. 物理学报, 2017, 66(23): 230701. doi: 10.7498/aps.66.230701
    [4] 熊晓波, 刘万里, 袁曦明, 刘金存, 宋江齐, 梁玉军. SrZn2(PO4)2:Sn2+,Mn2+荧光粉的发光性质及其能量传递机理. 物理学报, 2015, 64(24): 247801. doi: 10.7498/aps.64.247801
    [5] 熊晓波, 袁曦明, 刘金存, 宋江齐. Na2SrMg(PO4)2: Ce3+, Mn2+荧光粉的发光性质及其能量传递机理. 物理学报, 2015, 64(1): 017801. doi: 10.7498/aps.64.017801
    [6] 梁锋, 胡义华, 陈丽, 王小涓. 荧光粉CaWO4:Eu3+中WO42-与Eu3+间的能量转递. 物理学报, 2013, 62(18): 183302. doi: 10.7498/aps.62.183302
    [7] 米瑞宇, 夏志国, 刘海坤. Ce3+, Mn2+共掺的Ca4Y6 (SiO4)6F2的发光性质和能量传递. 物理学报, 2013, 62(13): 137802. doi: 10.7498/aps.62.137802
    [8] 沈应龙, 唐春梅, 盛秋春, 刘双, 李文涛, 王龙飞, 陈丹平. 铈铕共掺高钆氧化物玻璃的发光性能及能量传递效应. 物理学报, 2013, 62(11): 117803. doi: 10.7498/aps.62.117803
    [9] 毕长虹, 孟庆裕. CaWO4:Sm3+荧光粉的发光性质及其能量传递机理. 物理学报, 2013, 62(19): 197804. doi: 10.7498/aps.62.197804
    [10] 钟瑞霞, 张家骅, 李明亚, 王晓强. Eu2+, Cr3+共掺杂的MAl12O19 (M=Ca, Sr, Ba)的发光性质及能量传递. 物理学报, 2012, 61(11): 117801. doi: 10.7498/aps.61.117801
    [11] 杨志平, 杨广伟, 王少丽, 田 晶, 李盼来, 李 旭. Eu2+,Mn2+在BaZnP2O7中的发光及Eu2+→Mn2+能量传递. 物理学报, 2008, 57(1): 581-585. doi: 10.7498/aps.57.581
    [12] 锁 钒, 于军胜, 邓 静, 蒋亚东, 王 睿, 汪伟志, 刘天西. 芴-咔唑新型共聚物/PVK掺杂体系的电致发光特性研究. 物理学报, 2007, 56(11): 6685-6690. doi: 10.7498/aps.56.6685
    [13] 陈敢新, 张勤远, 杨钢锋, 杨中民, 姜中宏. Tm3+/Ho3+共掺碲酸盐玻璃的2.0μm发光特性及能量传递. 物理学报, 2007, 56(7): 4200-4206. doi: 10.7498/aps.56.4200
    [14] 石冬梅, 张勤远, 杨钢锋, 姜中宏. Tm3+/Ho3+共掺镓铋酸盐玻璃1.47μm发光特性和能量传递的研究. 物理学报, 2007, 56(5): 2951-2957. doi: 10.7498/aps.56.2951
    [15] 金 哲, 聂秋华, 徐铁峰, 戴世勋, 沈 祥, 章向华. Tm3+/Yb3+共掺碲铅锌镧玻璃的能量传递和上转换发光. 物理学报, 2007, 56(4): 2261-2267. doi: 10.7498/aps.56.2261
    [16] 符史流, 尹 涛, 丁球科, 赵韦人. Eu3+掺杂的Sr2CeO4发光材料的光致发光研究. 物理学报, 2006, 55(9): 4940-4945. doi: 10.7498/aps.55.4940
    [17] 孙世菊, 滕 枫, 徐 征, 张延芬, 侯延冰. 聚乙烯基咔唑与Alq3混合薄膜的发光性能与能量传递过程. 物理学报, 2004, 53(11): 3934-3939. doi: 10.7498/aps.53.3934
    [18] 李丹, 吕少哲, 陈宝玖, 王海宇, 唐波, 张家骅, 侯尚公, 黄世华. Y2O3:Eu纳米晶中能量传递相互作用的研究. 物理学报, 2001, 50(5): 933-937. doi: 10.7498/aps.50.933
    [19] 王殿元, 谢平波, 张慰萍, 楼立人, 夏上达. 稀土离子发光体系中能量传递和迁移模型的研究. 物理学报, 2001, 50(2): 329-334. doi: 10.7498/aps.50.329
    [20] 江少恩, 郑志坚, 成金秀, 孙可煦, 杨家敏, 王红斌. X射线沿柱腔轴向能量传输实验测量. 物理学报, 2000, 49(7): 1303-1306. doi: 10.7498/aps.49.1303
计量
  • 文章访问数:  4190
  • PDF下载量:  227
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-16
  • 修回日期:  2016-07-26
  • 刊出日期:  2016-12-05

/

返回文章
返回