搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型全腔输出半透明阴极相对论磁控管的理论和数值研究

杨温渊 董烨 董志伟

引用本文:
Citation:

新型全腔输出半透明阴极相对论磁控管的理论和数值研究

杨温渊, 董烨, 董志伟

Theoretical and numerical investigations of the novel relativistic magnetron using all-cavity output and semi-transparent cathode

Yang Wen-Yuan, Dong Ye, Dong Zhi-Wei
PDF
导出引用
  • 为减小器件的体积和重量,提高器件的实用性,在轴向渐变输出结构半透明阴极相对论磁控管的基础上,提出了全腔耦合输出结构半透明阴极相对论磁控管,并对其进行了理论分析和数值模拟.采用全腔输出结构后,器件互作用区径向半径由10.5 cm降到6.6 cm,轴向长度由大于40 cm降到小于30 cm,器件尺寸显著减小.通过对输出结构的参数优化,在注入电子束电压和电流分别约为395 kV和5.6 kA、外加磁场为4.75 kGs(1 Gs=10-4 T)时,模拟在S波段获得了效率约50%的微波输出,输出功率达到1.15 GW,模式更加纯净.同时还分析了耦合孔的长度、宽度和深度以及输出波导的宽度和短路面起始位置等参数对输出性能的影响规律.
    Relativistic magnetron is a kind of compact cross-field high power microwave source. It has the virtues of wide frequency tunability and ability to operate with relative lower external magnetic field. To improve the compactness and reduce the size and weight of the relativistic magnetron further, a novel relativistic magnetron using all-cavity output and semi-transparent cathode is investigated theoretically and numerically. By using the all-cavity output structure, the radial dimension is reduced markedly (from 10.5 cm to 6.6 cm) and the axial dimension is also shortened considerably (from larger than 40 cm to less than 30 cm). Since the radiation fields in the interaction cavity are coupled through the coupling hole to the output fan waveguide, the cutoff frequencies of the fundamental mode and three higher order modes in the fan waveguide with different outer radii are calculated. The calculation results show that the mode separation is wide enough for the single mode operation on the fundamental mode. And by using the semi-transparent cathode, the high output efficiency can be obtained and the output characteristics are insensitive to the depth and width of each cathode slot. To verify the characteristic of the proposed magnetron, numerical simulations are carried out by using the three-dimensional particle-in-cell code. After careful optimization, simulations show that with a beam voltage of 395 kV and beam current of 5.6 kA, 1.15 GW output microwave with an efficiency of about 50% can be obtained at S-band with purer mode. The corresponding applied magnetic field is 4.75 kGs (1 Gs=1-4 T). In a relatively large range, both radiation power and the optimal magnetic field increase with the beam voltage. But the output efficiency keeps almost unchanged. The effects of the depth, width and length of the coupling hole, width of the fan waveguide and the distance from the beginning position of the fan waveguide to the coupling hole center Lsc on the output characteristics are also analyzed. Simulation results show that when the dimension of the coupling hole is small, the output power is low. But there is no mode competition and the device works on the up mode. With the increase of the coupling hole, the output power increases accordingly. When the coupling hole is large enough, the mode competition between the up mode and /3 mode becomes so serious that the mode cannot win any more. At the same time, the output power decreases markedly. There also exist optimal values of both the fan width and the beginning position of the fan waveguide (Lsc) for maximal output power.
      通信作者: 杨温渊, yang_wenyuan@iapcm.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11305015,11475155)和中国工程物理研究院科学技术发展基金(批准号:2015B0402091)资助的课题.
      Corresponding author: Yang Wen-Yuan, yang_wenyuan@iapcm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11305015, 11475155) and the Science Foundation of China Academy of Engineering Physics, China (Grant No. 2015B0402091).
    [1]

    Barker R J, Schamiloglu E 2001 High-Power Microwave Sources and Technologies (New York:Institute of Electrical and Electronics Engineer, Inc.) pp56-60

    [2]

    Liu M Q, Liu C L, Galbreath D, Michel C, Prasad S, Fuks M I, Schamiloglu E 2011 J. Appl. Phys. 110 033304

    [3]

    Kim H J, Choi J J 2007 IEEE Trans. Dielectr. Elect. Insul. 14 1045

    [4]

    Bosman H L, Fuks M I, Prasad S, Schamiloglu E 2006 IEEE Trans. Plas. Sci. 34 606

    [5]

    Fuks M I, Schamiloglu E 2010 IEEE Trans. Plas. Sci. 38 1302

    [6]

    Jones M C, Neculaes V B, Lau Y Y, Gilgenbach R M, White W M, Hoff B W, Jordan N M 2005 Appl. Phys. Lett. 87 081501

    [7]

    Fuks M I, Schamiloglu E 2005 Phys. Rev. Lett. 95 205101

    [8]

    Daimon M, Jiang W 2007 Appl. Phys. Lett. 91 191503

    [9]

    Hoff B W, Greenwood A D, Mardahl P J, M D Haworth 2012 IEEE Trans. Plas. Sci. 40 3046

    [10]

    Fleming T P, Mardahl P J, Bowers L A, Cartwright K L 2006 Conference Record of the 2006 Twenty-Seventh International Power Modulator Symposium Arlington Virginia, USA, May 14-18, 2006 p401

    [11]

    Prasad S, Roybal M, Buchenauer C J, Prestwich K, Fuks M I, Schamiloglu E 2009 IEEE Pulsed Power Conference Washington, DC, USA, June 27-July 1, 2009 p81

    [12]

    Yamazaki H, Jiang W 2007 Proceedings of ITC/ISHW Toki, Japan, October 15-19, 2007 p1

    [13]

    Su L, Li T M, Li J Y 2011 High Power Laser and Particle Beams 23 3039 (in Chinese)[苏黎, 李天明, 李家胤2011强激光与粒子束 23 3039]

    [14]

    Li W, Liu Y, Zhang J, Shu T, Yang H, Fan Y, Yuan C 2012 Rev. Sci. Instrum. 83 024707

    [15]

    Yang W, Dong, Z, Yang Y, Dong Y 2014 IEEE Trans. Plas. Sci. 42 3458

    [16]

    Greenwood A D 2006 US Patent 7106004[2006-9-12]

    [17]

    Zhang K Q, Li D J 2001 Electromagnetic Theory in Microwaves and Optoelectronics (1st Ed.) (Beijing:Publishing House of Electronics Industry) pp295-297(in Chinese)[张克潜, 李德杰2001微波与光电子学中的电磁理论(第1版) (北京:电子工业出版社)第295–297页]

  • [1]

    Barker R J, Schamiloglu E 2001 High-Power Microwave Sources and Technologies (New York:Institute of Electrical and Electronics Engineer, Inc.) pp56-60

    [2]

    Liu M Q, Liu C L, Galbreath D, Michel C, Prasad S, Fuks M I, Schamiloglu E 2011 J. Appl. Phys. 110 033304

    [3]

    Kim H J, Choi J J 2007 IEEE Trans. Dielectr. Elect. Insul. 14 1045

    [4]

    Bosman H L, Fuks M I, Prasad S, Schamiloglu E 2006 IEEE Trans. Plas. Sci. 34 606

    [5]

    Fuks M I, Schamiloglu E 2010 IEEE Trans. Plas. Sci. 38 1302

    [6]

    Jones M C, Neculaes V B, Lau Y Y, Gilgenbach R M, White W M, Hoff B W, Jordan N M 2005 Appl. Phys. Lett. 87 081501

    [7]

    Fuks M I, Schamiloglu E 2005 Phys. Rev. Lett. 95 205101

    [8]

    Daimon M, Jiang W 2007 Appl. Phys. Lett. 91 191503

    [9]

    Hoff B W, Greenwood A D, Mardahl P J, M D Haworth 2012 IEEE Trans. Plas. Sci. 40 3046

    [10]

    Fleming T P, Mardahl P J, Bowers L A, Cartwright K L 2006 Conference Record of the 2006 Twenty-Seventh International Power Modulator Symposium Arlington Virginia, USA, May 14-18, 2006 p401

    [11]

    Prasad S, Roybal M, Buchenauer C J, Prestwich K, Fuks M I, Schamiloglu E 2009 IEEE Pulsed Power Conference Washington, DC, USA, June 27-July 1, 2009 p81

    [12]

    Yamazaki H, Jiang W 2007 Proceedings of ITC/ISHW Toki, Japan, October 15-19, 2007 p1

    [13]

    Su L, Li T M, Li J Y 2011 High Power Laser and Particle Beams 23 3039 (in Chinese)[苏黎, 李天明, 李家胤2011强激光与粒子束 23 3039]

    [14]

    Li W, Liu Y, Zhang J, Shu T, Yang H, Fan Y, Yuan C 2012 Rev. Sci. Instrum. 83 024707

    [15]

    Yang W, Dong, Z, Yang Y, Dong Y 2014 IEEE Trans. Plas. Sci. 42 3458

    [16]

    Greenwood A D 2006 US Patent 7106004[2006-9-12]

    [17]

    Zhang K Q, Li D J 2001 Electromagnetic Theory in Microwaves and Optoelectronics (1st Ed.) (Beijing:Publishing House of Electronics Industry) pp295-297(in Chinese)[张克潜, 李德杰2001微波与光电子学中的电磁理论(第1版) (北京:电子工业出版社)第295–297页]

计量
  • 文章访问数:  4141
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-11
  • 修回日期:  2016-09-06
  • 刊出日期:  2016-12-05

/

返回文章
返回