搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双频双波束加热电离层激发甚低频/极低频辐射理论分析

杨巨涛 李清亮 王建国 郝书吉 潘威炎

引用本文:
Citation:

双频双波束加热电离层激发甚低频/极低频辐射理论分析

杨巨涛, 李清亮, 王建国, 郝书吉, 潘威炎

Theory of very low frequency/extra low frequency radiation by dual-beam beat wave heating ionosphere

Yang Ju-Tao, Li Qing-Liang, Wang Jian-Guo, Hao Shu-Ji, Pan Wei-Yan
PDF
导出引用
  • 基于高电离层质动力非线性加热理论,引入差频双波束概念,建立双频双波束加热电离层激发甚低频/极低频(VLF/ELF)辐射理论仿真模型,通过对已有实验参数进行仿真计算,验证了模型的正确性.据此模型,全面分析了不同纬度、有效辐射功率、加热频率、极化模式、频率差、实验时段等对激发VLF/ELF辐射强度的影响,并对比分析了中低纬度地区双频双波束和幅度调制两种方法激发VLF/ELF信号的差异.分析结果表明:VLF/ELF辐射效果随着地磁倾角的增加而增强,随着系统有效辐射功率的增大而增强;X波模式优于O波模式;实验时段冬季最好,夜晚优于白天;加热频率和频率差存在最优值选取问题.对于背景自然电流较弱的中低纬度地区,相对现有幅度调制方法,利用双频双波束方法激发VLF/ELF辐射更加有效,两者相差10 dB以上.
    At high latitudes, the proposed dual-beam beat wave method has become the focus of research because of its relative amplitude modulation method. The very low frequency/extra low frequency(VLF/ELF) radiation intensity does not depend on the background of the current, and can be used as an importantparameter of VLF/ELF radiation in poor background conditions. As for the background of weak natural current in middle and low latitude regions, the amplitude modulation method stimulates the VLF/ELF radiation effect poorly, therefore, at the low latitudes, the relative amplitude modulation method, dual-beam beat waves method may be more effective. In this paper, according to the pondermotive nonlinear heating theory in the upper ionosphere, a simulation model is presented about VLF/ELF radiation generated by dual-beam heating of the ionosphere via beating waves. This model is validated by calculations and the available experimental parameters. Based on this model, a comprehensive analysis is performed, involving the dependences of radiation intensity on various parameters such as latitude, effective radiation power(ERP), heating frequency, polarization, experimental times, and beating frequency difference. Then, we compare the dual-beam beat wave method with the amplitude modulation in stimulating VLF/ELF signals in the low and moderate latitude regions. Several conclusions are drawn as follows. First, the increases of geomagnetic declination and ERP of the heating facility may lead to a considerable improvement in radiation efficiency. Second, the X-mode polarization is more efficient for radiation than the O-mode polarization. Third, the most remarkable radiation effect may appear at winter night. The optimal heating frequency and the beating wave difference could be found under certain conditions. Stimulations of VLF/ELF radiation with the dual-beam beating wave method are more effectivethan the available amplitude modulation, the difference in VLF/ELF radiation intensity between the two methods is about 10 dB.
      通信作者: 杨巨涛, yyjt521@126.com
    • 基金项目: 电波环境特性及模化技术重点实验室专项资金(批准号:201600017)资助的课题.
      Corresponding author: Yang Ju-Tao, yyjt521@126.com
    • Funds: Project supported by National Key Laboratory of Electromagnetic Environment, China(Grant No. 201600017).
    [1]

    Willis S W, Davis J R 1973 Geophys. Res. 78 5710

    [2]

    Getmantsev G G, Zuikov N A, Kotik D S, Mironenko L F, Mityakov N A, Rapoport V O, Sazonov Y A, Trakhtengerts V Y, Eidman V Y 1974 JETP Lett. 20 101

    [3]

    Barr R, Stubbe P 1984 Radio Sci. 19 1111

    [4]

    Li Q L, Yang J T, Yan Y B, Zhao Y J 2008 Chin. J. Radio Sci. 23 883 (in Chinese)[李清亮, 杨巨涛, 闫玉波, 赵耀军2008电波科学学报23 883]

    [5]

    Hao S J, Li Q L, Yang J T, Wu Z S 2013 Acta Phys. Sin. 62 229402 (in Chinese)[郝书吉, 李清亮, 杨巨涛, 吴振森2013物理学报62 229402]

    [6]

    Maxworth A S, Gokowski M, Cohen M B, Moore R C 2015 Radio Sci. 50 1008

    [7]

    Moore R C, Inan U S, Bell T F, Kennedy E J 2007 Geophys. Res. Lett. 112 A05309

    [8]

    Platino M, Inan U S 2006 Geophys. Res. Lett. 33 L16101

    [9]

    Kapustin I N, Pertsovskii R A, Vasil'ev A N, Smirnov V S 1977 JETP Lett. 25 228

    [10]

    Belyaev P P, Kotik D S, Mityakov S N, Polyakov S V 1987 Radiophys. Quantum Electron. 30 189

    [11]

    Barr R, Stubbe P 1997 J. Atmos. Terr. Phys. 59 2265

    [12]

    Kuo S P, Snyder A, Kossey P, Chang C L 2011 Geophys. Res. Lett. 38 L10608

    [13]

    Cohen M B, Moore R C, Golkowski M, Lehtinen N G 2012 J. Geophys. Res. 117 A12310

    [14]

    Tereshchenko E D, Shumilov O I, Kasatkina E A, Gomonov A D 2014 Geophys. Res. Lett. 41 4442

    [15]

    Ferraro A J, Lee H S, Allshouse R, Carroll K, Tomko A A 1982 J. Atmos. Terr. Phys. 44 1113

    [16]

    Shoucri M M, Morales G J, Maggs J E 1984 J. Geophys. Res. 89 2907

    [17]

    Kuo S P, Koretzky E 1999 Geophys. Res. Lett. 26 1677

    [18]

    Stubbe P, Varnum W S 1972 Planet Space Sci. 20 1121

    [19]

    Hansen J D, Morales G J, Maggs J E 1992 J. Geophys. Res. 97 17019

    [20]

    Banks P, Kockarts 1973 Aeronomy(Part A and Part B)(New York:Academic Press)

    [21]

    Hao S J, Li Q L, Yang J T, Wu Z S 2013 Chin. J. Geophys. 56 2503 (in Chinese)[郝书吉, 李清亮, 杨巨涛, 吴振森2013地球物理学报56 2503]

    [22]

    Hao S J, Li Q L, Yang J T, Wu Z S 2013 J. Electron. Inform. Technol. 35 1502(in Chinese)[郝书吉, 李清亮, 杨巨涛, 吴振森2013电子与信息学报35 1502]

    [23]

    Deng F, Zhao Z Y, Shi R, Zhang Y N 2009 Acta Phys. Sin. 58 7382 (in Chinese)[邓峰, 赵正予, 石润, 张援农2009物理学报58 7382]

    [24]

    Mingaleva G I, Mingalev V S 2009 Phys. Auroral Phenomena 71 160

  • [1]

    Willis S W, Davis J R 1973 Geophys. Res. 78 5710

    [2]

    Getmantsev G G, Zuikov N A, Kotik D S, Mironenko L F, Mityakov N A, Rapoport V O, Sazonov Y A, Trakhtengerts V Y, Eidman V Y 1974 JETP Lett. 20 101

    [3]

    Barr R, Stubbe P 1984 Radio Sci. 19 1111

    [4]

    Li Q L, Yang J T, Yan Y B, Zhao Y J 2008 Chin. J. Radio Sci. 23 883 (in Chinese)[李清亮, 杨巨涛, 闫玉波, 赵耀军2008电波科学学报23 883]

    [5]

    Hao S J, Li Q L, Yang J T, Wu Z S 2013 Acta Phys. Sin. 62 229402 (in Chinese)[郝书吉, 李清亮, 杨巨涛, 吴振森2013物理学报62 229402]

    [6]

    Maxworth A S, Gokowski M, Cohen M B, Moore R C 2015 Radio Sci. 50 1008

    [7]

    Moore R C, Inan U S, Bell T F, Kennedy E J 2007 Geophys. Res. Lett. 112 A05309

    [8]

    Platino M, Inan U S 2006 Geophys. Res. Lett. 33 L16101

    [9]

    Kapustin I N, Pertsovskii R A, Vasil'ev A N, Smirnov V S 1977 JETP Lett. 25 228

    [10]

    Belyaev P P, Kotik D S, Mityakov S N, Polyakov S V 1987 Radiophys. Quantum Electron. 30 189

    [11]

    Barr R, Stubbe P 1997 J. Atmos. Terr. Phys. 59 2265

    [12]

    Kuo S P, Snyder A, Kossey P, Chang C L 2011 Geophys. Res. Lett. 38 L10608

    [13]

    Cohen M B, Moore R C, Golkowski M, Lehtinen N G 2012 J. Geophys. Res. 117 A12310

    [14]

    Tereshchenko E D, Shumilov O I, Kasatkina E A, Gomonov A D 2014 Geophys. Res. Lett. 41 4442

    [15]

    Ferraro A J, Lee H S, Allshouse R, Carroll K, Tomko A A 1982 J. Atmos. Terr. Phys. 44 1113

    [16]

    Shoucri M M, Morales G J, Maggs J E 1984 J. Geophys. Res. 89 2907

    [17]

    Kuo S P, Koretzky E 1999 Geophys. Res. Lett. 26 1677

    [18]

    Stubbe P, Varnum W S 1972 Planet Space Sci. 20 1121

    [19]

    Hansen J D, Morales G J, Maggs J E 1992 J. Geophys. Res. 97 17019

    [20]

    Banks P, Kockarts 1973 Aeronomy(Part A and Part B)(New York:Academic Press)

    [21]

    Hao S J, Li Q L, Yang J T, Wu Z S 2013 Chin. J. Geophys. 56 2503 (in Chinese)[郝书吉, 李清亮, 杨巨涛, 吴振森2013地球物理学报56 2503]

    [22]

    Hao S J, Li Q L, Yang J T, Wu Z S 2013 J. Electron. Inform. Technol. 35 1502(in Chinese)[郝书吉, 李清亮, 杨巨涛, 吴振森2013电子与信息学报35 1502]

    [23]

    Deng F, Zhao Z Y, Shi R, Zhang Y N 2009 Acta Phys. Sin. 58 7382 (in Chinese)[邓峰, 赵正予, 石润, 张援农2009物理学报58 7382]

    [24]

    Mingaleva G I, Mingalev V S 2009 Phys. Auroral Phenomena 71 160

  • [1] 朱肖丽, 胡耀垓, 赵正予, 张援农. 钡和铯释放的电离层扰动效应对比. 物理学报, 2020, 69(2): 029401. doi: 10.7498/aps.69.20191266
    [2] 王琛, 崔勇, 宋晓, 袁海文. 基于驻极体材料的机械天线式低频/甚低频通信磁场传播模型. 物理学报, 2020, 69(15): 158401. doi: 10.7498/aps.69.20200314
    [3] 赵海生, 许正文, 徐朝辉, 薛昆, 郑延帅, 谢守志, 冯杰, 吴健. 基于化学物质释放的电离层闪烁抑制方法研究. 物理学报, 2019, 68(10): 109401. doi: 10.7498/aps.68.20182281
    [4] 吕立斌, 李清亮, 郝书吉, 吴振森. 人工沿场不均匀体对短波垂直探测影响的理论分析. 物理学报, 2017, 66(5): 059401. doi: 10.7498/aps.66.059401
    [5] 罗旭东, 牛胜利, 左应红. 典型甚低频电磁波对辐射带高能电子的散射损失效应. 物理学报, 2015, 64(6): 069401. doi: 10.7498/aps.64.069401
    [6] 常珊珊, 倪彬彬, 赵正予, 汪枫, 李金星, 赵晶晶, 顾旭东, 周晨. 基于试验粒子模拟的电离层人工调制激发的极低频和甚低频波对磁层高能电子的散射效应. 物理学报, 2014, 63(6): 069401. doi: 10.7498/aps.63.069401
    [7] 胡耀垓, 赵正予, 张援农. 不同释放高度的化学物质的电离层扰动特性. 物理学报, 2013, 62(20): 209401. doi: 10.7498/aps.62.209401
    [8] 郝书吉, 李清亮, 杨巨涛, 吴振森. 电离层调制加热产生极低频/甚低频波定向辐射的理论分析. 物理学报, 2013, 62(22): 229402. doi: 10.7498/aps.62.229402
    [9] 盛峥. 电离层电子总含量不同时间尺度的预报模型研究. 物理学报, 2012, 61(21): 219401. doi: 10.7498/aps.61.219401
    [10] 汪枫, 赵正予, 常珊珊, 倪彬彬, 顾旭东. 低纬电离层人工调制所激发的ELF波射线追踪. 物理学报, 2012, 61(19): 199401. doi: 10.7498/aps.61.199401
    [11] 胡耀垓, 赵正予, 张援农. 电离层钡云释放早期动力学行为的数值模拟. 物理学报, 2012, 61(8): 089401. doi: 10.7498/aps.61.089401
    [12] 胡耀垓, 赵正予, 项薇, 张援农. 人工电离层洞形态调制及其对短波传播的影响. 物理学报, 2011, 60(9): 099402. doi: 10.7498/aps.60.099402
    [13] 洪振杰, 刘荣建, 郭鹏, 董乃铭. 非球对称电离层掩星数据反演. 物理学报, 2011, 60(12): 129401. doi: 10.7498/aps.60.129401
    [14] 徐贤胜, 洪振杰, 郭鹏, 刘荣建. COSMIC掩星电离层资料反演以及结果验证. 物理学报, 2010, 59(3): 2163-2168. doi: 10.7498/aps.59.2163
    [15] 胡耀垓, 赵正予, 张援农. 几种典型化学物质的电离层释放效应研究. 物理学报, 2010, 59(11): 8293-8303. doi: 10.7498/aps.59.8293
    [16] 石润, 赵正予. 磁倾角对电离层Alfven谐振器影响的初步研究. 物理学报, 2009, 58(7): 5111-5117. doi: 10.7498/aps.58.5111
    [17] 邓峰, 赵正予, 石润, 张援农. 中低纬电离层加热大尺度场向不均匀体的二维数值模拟. 物理学报, 2009, 58(10): 7382-7391. doi: 10.7498/aps.58.7382
    [18] 黄朝松, 李钧, M .C. KELLEY. 大气重力波产生中纬电离层不均匀体的理论. 物理学报, 1994, 43(9): 1476-1485. doi: 10.7498/aps.43.1476
    [19] 潘威炎. 关于地球曲率对低频电波电离层反射系数计算的影响. 物理学报, 1981, 30(5): 661-670. doi: 10.7498/aps.30.661
    [20] 陈茂康, 张煦. 研究中国天空电离层之初草报告. 物理学报, 1935, 1(3): 92-100. doi: 10.7498/aps.1.92
计量
  • 文章访问数:  5096
  • PDF下载量:  259
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-07
  • 修回日期:  2016-09-20
  • 刊出日期:  2017-01-05

/

返回文章
返回