搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分段信号相关累加的变速度多站联合直接定位方法

逯志宇 任衍青 巴斌 王大鸣 张杰

引用本文:
Citation:

基于分段信号相关累加的变速度多站联合直接定位方法

逯志宇, 任衍青, 巴斌, 王大鸣, 张杰

An improved direct position determination method based on correlation accumulation of short-time signals with variable velocity receivers

Lu Zhi-Yu, Ren Yan-Qing, Ba Bin, Wang Da-Ming, Zhang Jie
PDF
导出引用
  • 在低信噪比条件下,基于时延和多普勒频移的直接定位算法在解决宽带信号源定位时精度较差.针对此问题,提出了一种基于分段信号相关累加的变速度多站联合直接定位算法,并给出了其克拉美罗下界.该算法利用多个变速度的观测站对信号进行接收,然后将同一观测站接收的目标信号分割成多段不重叠的短时信号,采用最大似然估计器,联合各段信号的时延、多普勒频移信息对目标进行直接定位.算法充分利用了观测信号包含的定位信息,并利用观测站速度的变化增加了目标位置信息,解决了分段信号联合估计带来的定位模糊问题,使定位精度进一步提高,增加了算法的实用性.仿真实验表明,较之传统直接定位算法,本文算法定位精度更高,尤其在低信噪比条件下更能逼近克拉美罗界.
    Wireless target location technology has been widely used in civil and military fields. In the two-step localization algorithms, the signal measurements, such as thetime of arrival, theangle of arrival, the frequency difference of arrival, etc., should be extracted first from the receivedsource signal. Then the target position is identified by calculating the location equation. Compared with the two-step localization algorithms, the direct position determination (DPD) method, which need not estimate the signal parameters and calculate the position step by step, but obtainsthe source position from the received signals directly based on the maximum likelihood criterion, has been shown to have a goodestimation accuracy and robustness, especially under low signal-to-noise ratio (SNR) conditions. So it has been widely studied in recent years and has made remarkable achievements in academic research. However, the DPD algorithm of wideband signals emitters is not performing well with moving receivers in the joint positioning based on time delay and Doppler shift under the low SNRs. To obtaina better positioning performance, in this paper we present a DPD algorithm with variable velocity receivers based on coherent summation of short-time signal segments, and derive the source position Cramer-Rao lower bound (CRLB). The algorithm designs a positioning model in which the multiple variable velocity receivers are usedtoobtain the source signal, then the signal received at the same receiver is patitioned into multiple non-overlapping short-time signal segments, based on which, an approximate maximum likelihood estimator for the new DPD algorithm is developed. The algorithm makes full use of the location information contained in the coherency among the signals segments, while extra target position information is acquired through the speed variability in the positioning model, and thus the problem of location ambiguity is solved. The simulation results show thatthe algorithm proposed in this paper further improves the positioning performance, and outperforms the traditional DPD algorithms with more accurate results. Especially in the low SNR, it is closer to the CRLB.
      通信作者: 逯志宇, zhiyulu1030@126.com
    • 基金项目: 国家高技术研究发展计划(批准号:2012AA01A502,2012AA01A505)和国家自然科学基金(批准号:61401513)资助的课题.
      Corresponding author: Lu Zhi-Yu, zhiyulu1030@126.com
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant Nos. 2012AA01A502, 2012AA01A505) and the National Natural Science Foundation of China (Grant No. 61401513).
    [1]

    Oh D, Kim S, Yoon S H 2013 IEEE Trans. Wireless Commun. 12 3130

    [2]

    Lei H, So H C 2013 IEEE Trans. Signal Process. 61 4860

    [3]

    Ba B, Liu G C, Li T, Lin Y C, Wang Y 2015 Acta Phys. Sin. 64 078403 (in Chinese)[巴斌, 刘国春, 李韬, 林禹丞, 王瑜2015物理学报64 078403]

    [4]

    Lu Z Y, Wang D M, Wang J H, Wang Y 2015 Acta Phys. Sin. 64 150502 (in Chinese)[逯志宇, 王大鸣, 王建辉, 王跃2015物理学报64 150502]

    [5]

    Wang G, Li Y M, Nirwan A 2013 IEEE Trans. Veh. Technol. 62 853

    [6]

    Ho K C, Chan Y T 1997 IEEE Trans. Aerosp. Electron. Syst. 33 770

    [7]

    Chan Y T, Ho K C 2005 IEEE Trans. Signal Process. 53 2625

    [8]

    Bosse J, Ferréol A, Larzabal P 2011 IEEE Statistical Signal Processing Workshop Nice, France, June 2-6, 2011 p701

    [9]

    Weiss A J 2004 IEEE Signal Process Lett. 11 513

    [10]

    Weiss A J, Amar A 2005 EURASIP J. Adv. Signal Process. 1 37

    [11]

    Amar A, Weiss A J 2006 Digital Signal Process. 16 52

    [12]

    Bar-Shalom O, Weiss A J 2011 Signal Process. 91 2345

    [13]

    Pourhomayoun M, Fowler M L 2014 IEEE Trans. Aerosp. Electron. Syst. 50 2878

    [14]

    Vankayalapati N, Kay S, Ding Q 2014 IEEE Trans. Aerosp. Electron. Syst. 50 1616

    [15]

    Tirer T, Weiss A J 2016 IEEE Signal Process Lett. 23 192

    [16]

    Fu Z J, Sun X M, Liu Q, Zhou L, Shu J G 2015 IEICE Trans. Commun. 98 190

    [17]

    Ren Y J, Shen J, Wang J, Han J, Lee S Y 2015 J. Internet Technol. 16 317

    [18]

    Gu B, Sheng V S, Wang Z J, Ho D, Osman S, Li S 2015 Neural Networks 67 140

    [19]

    Wen X Z, Shao L, Xue Y, Fang W 2015 Inform. Sci. 295 395

    [20]

    Xie S D, Wang Y X 2014 Wireless Pers. Commun. 78 231

    [21]

    Amar A, Weiss A J 2008 IEEE Trans. Signal Process. 56 5500

    [22]

    Weiss A J 2011 IEEE Trans. Signal Process. 59 2513

    [23]

    Oispuu M, Nickel U 2010 International Itg Workshop on Smart Antennas IEEE 1 300

    [24]

    Bosse J, Ferreol A, Larzabal P 2013 IEEE Trans. Signal Process. 61 5485

    [25]

    Godrich H, Haimovich A M, Blum R S 2010 Information Theory IEEE Transactions on 56 2783

    [26]

    Li J Z, Yang L, Guo F C, Jiang W L 2015 Digital Signal Process. 48 58

    [27]

    Yeredor A, Angel E 2011 IEEE Trans. Signal Process. 59 1612

  • [1]

    Oh D, Kim S, Yoon S H 2013 IEEE Trans. Wireless Commun. 12 3130

    [2]

    Lei H, So H C 2013 IEEE Trans. Signal Process. 61 4860

    [3]

    Ba B, Liu G C, Li T, Lin Y C, Wang Y 2015 Acta Phys. Sin. 64 078403 (in Chinese)[巴斌, 刘国春, 李韬, 林禹丞, 王瑜2015物理学报64 078403]

    [4]

    Lu Z Y, Wang D M, Wang J H, Wang Y 2015 Acta Phys. Sin. 64 150502 (in Chinese)[逯志宇, 王大鸣, 王建辉, 王跃2015物理学报64 150502]

    [5]

    Wang G, Li Y M, Nirwan A 2013 IEEE Trans. Veh. Technol. 62 853

    [6]

    Ho K C, Chan Y T 1997 IEEE Trans. Aerosp. Electron. Syst. 33 770

    [7]

    Chan Y T, Ho K C 2005 IEEE Trans. Signal Process. 53 2625

    [8]

    Bosse J, Ferréol A, Larzabal P 2011 IEEE Statistical Signal Processing Workshop Nice, France, June 2-6, 2011 p701

    [9]

    Weiss A J 2004 IEEE Signal Process Lett. 11 513

    [10]

    Weiss A J, Amar A 2005 EURASIP J. Adv. Signal Process. 1 37

    [11]

    Amar A, Weiss A J 2006 Digital Signal Process. 16 52

    [12]

    Bar-Shalom O, Weiss A J 2011 Signal Process. 91 2345

    [13]

    Pourhomayoun M, Fowler M L 2014 IEEE Trans. Aerosp. Electron. Syst. 50 2878

    [14]

    Vankayalapati N, Kay S, Ding Q 2014 IEEE Trans. Aerosp. Electron. Syst. 50 1616

    [15]

    Tirer T, Weiss A J 2016 IEEE Signal Process Lett. 23 192

    [16]

    Fu Z J, Sun X M, Liu Q, Zhou L, Shu J G 2015 IEICE Trans. Commun. 98 190

    [17]

    Ren Y J, Shen J, Wang J, Han J, Lee S Y 2015 J. Internet Technol. 16 317

    [18]

    Gu B, Sheng V S, Wang Z J, Ho D, Osman S, Li S 2015 Neural Networks 67 140

    [19]

    Wen X Z, Shao L, Xue Y, Fang W 2015 Inform. Sci. 295 395

    [20]

    Xie S D, Wang Y X 2014 Wireless Pers. Commun. 78 231

    [21]

    Amar A, Weiss A J 2008 IEEE Trans. Signal Process. 56 5500

    [22]

    Weiss A J 2011 IEEE Trans. Signal Process. 59 2513

    [23]

    Oispuu M, Nickel U 2010 International Itg Workshop on Smart Antennas IEEE 1 300

    [24]

    Bosse J, Ferreol A, Larzabal P 2013 IEEE Trans. Signal Process. 61 5485

    [25]

    Godrich H, Haimovich A M, Blum R S 2010 Information Theory IEEE Transactions on 56 2783

    [26]

    Li J Z, Yang L, Guo F C, Jiang W L 2015 Digital Signal Process. 48 58

    [27]

    Yeredor A, Angel E 2011 IEEE Trans. Signal Process. 59 1612

  • [1] 李鑫, 解舒云, 李林帆, 周海涛, 王丹, 杨保东. 基于光学非互易的双路多信道全光操控. 物理学报, 2022, 71(18): 184202. doi: 10.7498/aps.71.20220506
    [2] 孔德智, 孙超, 李明杨, 卓颉, 刘雄厚. 深海波导中基于采样简正波模态降维处理的广义似然比检测. 物理学报, 2019, 68(17): 174301. doi: 10.7498/aps.68.20190700
    [3] 郭力仁, 胡以华, 王云鹏, 徐世龙. 基于最大似然的单通道交叠激光微多普勒信号参数分离估计. 物理学报, 2018, 67(11): 114202. doi: 10.7498/aps.67.20172639
    [4] 杜军, 杨娜, 李峻灵, 曲彦臣, 李世明, 丁云鸿, 李锐. 相位调制激光多普勒频移测量方法的改进. 物理学报, 2018, 67(6): 064204. doi: 10.7498/aps.67.20172049
    [5] 任子良, 秦勇, 黄锦旺, 赵智, 冯久超. 基于广义似然比判决的混沌信号重构方法. 物理学报, 2017, 66(4): 040503. doi: 10.7498/aps.66.040503
    [6] 唐智灵, 于立娟, 李思敏. 基于高速移动通信的虚拟天线阵列理论研究. 物理学报, 2016, 65(7): 070701. doi: 10.7498/aps.65.070701
    [7] 梁国龙, 陶凯, 王晋晋, 范展. 声矢量阵宽带目标波束域变换广义似然比检测算法. 物理学报, 2015, 64(9): 094303. doi: 10.7498/aps.64.094303
    [8] 宋佳凝, 徐国栋, 李鹏飞. 多谐波脉冲星信号时延估计方法. 物理学报, 2015, 64(21): 219702. doi: 10.7498/aps.64.219702
    [9] 王燕, 邹男, 梁国龙. 强多途环境下水听器阵列位置近场有源校正方法. 物理学报, 2015, 64(2): 024304. doi: 10.7498/aps.64.024304
    [10] 周飞, 曹原, 雍海林, 彭承志, 王向斌. 基于电光效应的光子频移研究. 物理学报, 2014, 63(20): 204202. doi: 10.7498/aps.63.204202
    [11] 李晶, 赵拥军, 李冬海. 基于马尔科夫链蒙特卡罗的时延估计算法. 物理学报, 2014, 63(13): 130701. doi: 10.7498/aps.63.130701
    [12] 刘允, 彭启琮, 邵怀宗, 彭启航, 王玲. 一种基于授权信道特性的认知无线电频谱检测算法. 物理学报, 2013, 62(7): 078406. doi: 10.7498/aps.62.078406
    [13] 杜军, 赵卫疆, 曲彦臣, 陈振雷, 耿利杰. 基于相位调制器与Fabry-Perot干涉仪的激光多普勒频移测量方法. 物理学报, 2013, 62(18): 184206. doi: 10.7498/aps.62.184206
    [14] 高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟. 微小碎片加速器同轴枪内等离子体轴向速度研究. 物理学报, 2012, 61(14): 145201. doi: 10.7498/aps.61.145201
    [15] 赵江南, 艾勇, 王敬芳. 不需要校准激光的法-帕仪中高层大气温度反演方法和观测数据初步分析. 物理学报, 2012, 61(12): 129401. doi: 10.7498/aps.61.129401
    [16] 闫春燕, 张秋菊. 相对传播的双脉冲激光与薄膜靶作用产生的强单色谐波. 物理学报, 2010, 59(1): 322-328. doi: 10.7498/aps.59.322
    [17] 郭立新, 王 蕊, 王运华, 吴振森. 二维粗糙海面散射回波多普勒谱频移及展宽特征. 物理学报, 2008, 57(6): 3464-3472. doi: 10.7498/aps.57.3464
    [18] 初鑫钊, 刘淑琴, 董太乾. 铷原子频标中的微波功率频移. 物理学报, 1994, 43(7): 1072-1076. doi: 10.7498/aps.43.1072
    [19] 崔树范, 麦振洪, 储晞. 固态硅中Si—H红外吸收谱的频移. 物理学报, 1985, 34(8): 1096-1101. doi: 10.7498/aps.34.1096
    [20] 傅恩生, 王裕民, 程兆谷, 窦爱荣. 10.6μm的CO2激光的电光频移. 物理学报, 1979, 28(5): 24-31. doi: 10.7498/aps.28.24
计量
  • 文章访问数:  5655
  • PDF下载量:  196
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-26
  • 修回日期:  2016-11-03
  • 刊出日期:  2017-01-20

/

返回文章
返回