搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

丁酮3s里德堡态的超快光解动力学研究

罗金龙 凌丰姿 李帅 王艳梅 张冰

引用本文:
Citation:

丁酮3s里德堡态的超快光解动力学研究

罗金龙, 凌丰姿, 李帅, 王艳梅, 张冰

Ultrafast photodissociation dynamics of butanone in 3s Rydberg state

Luo Jin-Long, Ling Feng-Zi, Li Shuai, Wang Yan-Mei, Zhang Bing
PDF
导出引用
  • 本文采用195.8 nm飞秒激光将丁酮分子激发到S2(n,3s)里德堡态,在800 nm探测光的作用下获得时间分辨的飞行时间质谱.对实验结果的分析表明,由于丁酮位置具有一个甲基和一个乙基,使得Norrish I型解离反应表现出丰富的动力学特征.母体离子瞬态衰减的时间常数为(2.230.02)ps.丙酰基离子瞬态衰减与母体类似,只有一个为(2.150.02)ps的时间常数,说明丙酰基离子来自于母体的解离性电离.乙酰基离子的时间曲线拟合得到四个时间常数:1=(2.400.15)ps,2=(1.100.25)ps,3=(0.080.02)ps,4=(17.720.80)ps,分别对应于S2S1的内转换,S1态生成CH3CO()的初步解离,CH3CO()快速内转换为CH3CO(),以及CH3CO()基态上的二次解离.丁酮分子-CC键的解离存在分子内振动能量再分配(IVR)与势垒解离两种竞争的解离通道,但在该实验条件下,我们认为是通过分子内振动能量再分配通道发生解离的结果.
    The initiation and subsequent control or exploration study of chemical transformation in real time by using ultrashort laser pulses aim at femtochemistry. The real-time investigations of ultrafast dynamics of excited molecules in gas and condensed phases have attracted a great deal of attention over the last two decades. As a kind of important organic compound, aliphatic ketone is an area of much interest for many research fields, especially for atmospheric photochemistry. Via photodissociation reaction, it can release carbonyl radical whose chemical character is active and can react with hydroxyl easily. As a typical aliphatic ketone, butanone has been a research focus over the past decades. The ultrafast dissociation dynamics of butanone after excitation to the second electronically excited state (S2) with a 195.8 nm pump pulse is studied by the femtosecond pump-probe technique combined with the time-of-flight mass spectrometry (TOF-MS). Time-resolved mass spectrometry (TRMS) has proven to be a powerful technique to study the ultrafast dynamics of excited states in molecules. In this technique, the MCP detector is capable of recording time-resolved ion yield measurements of different cations by monitoring the current output directly from the anode by using an oscilloscope. This enables a time-of-flight mass spectrum to be recorded at each delay time, which is controlled by a delay stage, and the measured total signal is then integrated, yielding a time-resolved ion yield transient, which is conducted by LABVIEW software. The pump wavelength in this work is set to be 195.8 nm and the probe laser wavelength is centered at 800 nm. The complex ultrafast dynamics in butanone with 3s Rydberg state excitation and its possible decay paths and following dissociation mechanism are given. Experimental results show that the Norrish I type dissociation kinetics of butanone exhibit rich features, for it has a methyl group and an ethyl group at position. The decay time constant of the parent transient is approximately 2.23 ps0.02 ps. There is only one time constant of 2.15 ps0.02 ps for the fitting of the propionyl transient. The best fit of acetyltransient is obtained with four time constants:1=(2.400.15) ps, 2=(1.100.25) ps, 3=(0.080.02) ps, and 4=(17.720.80) ps, corresponding to S2S1 internal conversion, the primary dissociation of the S1 state generating CH3CO(), internal conversion and secondary dissociation of CH3CO() respectively. Two competitive -CC bond dissociation processes are observed and discussed. They are dissociation channels through intramolecular vibrational energy redistribution (IVR) and/or by getting over the dissociation barrier in -cleavage of butanone. But hereunder the condition of this experiment, the dissociation is the result of IVR.
      通信作者: 张冰, bzhang@wipm.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2013CB922200)和国家自然科学基金(批准号:21573279,21273274)资助的课题.
      Corresponding author: Zhang Bing, bzhang@wipm.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB922200) and the National Natural Science Foundation of China (Grant Nos. 21573279, 21273274).
    [1]

    Vacher J R, Jorand F, Blin-Simiand N, Pasquiers S 2008 Int. J. Mass Spectrom. 273 117

    [2]

    Mu Y, Mellouki A 2000 J. Photochem. Photobiol. A 134 31

    [3]

    Haas Y 2004 Photochem. Photobiol. Sci. 3 6

    [4]

    Noyes W A, Porter G B, Jolley J E 1956 Chem. Rev. 56 49

    [5]

    Diau E W G, Kötting C, Zewail A H 2003 Chem. Phys. Lett. 380 411

    [6]

    Chen W K, Ho J W, Cheng P Y 2005 J. Phys. Chem. A 109 6805

    [7]

    Chen W K, Cheng P Y 2005 J. Phys. Chem. A 109 6818

    [8]

    Chen W K, Ho J W, Cheng P Y 2005 Chem. Phys. Lett. 415 291

    [9]

    O Toole L, Brint P, Kosmidis C, Boulakis G, Tsekeris P 1991 J. Chem. Soc., Faraday Trans. 87 3343

    [10]

    Loo R O, Hall G E, Houston P L 1989 J. Chem. Phys. 90 4222

    [11]

    Zou P, McGivern W S, North S W 2000 Phys. Chem. Chem. Phys. 2 3785

    [12]

    Wei Z, Zhang F, Wang Y, Zhang B 2007 Chin. J. Chem. Phys. 20 419

    [13]

    Zhang R R, Qin C C, Long J Y, Yang M H, Zhang B 2012 Acta Phys.-Chim. Sin. 28 522

    [14]

    Sun C K, Hu Z, Yang X, Jin M X, Hu W C, Ding D J 2011 Chem. Res. Chinese Universities 27 508

    [15]

    Shen L, Zhang B, Suits A G 2010 J. Phys. Chem. A 114 3114

    [16]

    Traeger J C 1985 Org. Mass Spectrom. 20 223

    [17]

    Traeger J C, McLouglin R G, Nicholson A J C 1982 J. Am. Chem. Soc. 104 5318

    [18]

    Owrutsky J C, Baronavski A P 1998 J. Chem. Phys. 108 6652

    [19]

    Mordaunt D H, Osborn D L, Neumark D M 1998 J. Chem. Phys. 108 2448

    [20]

    Shibata T, Li H Y, Katayanagi H, Suzuki T 1998 J. Phys. Chem. A 102 3643

    [21]

    Deshmukh S, Myers J D, Xantheas S S, Hess W P 1994 J. Phys. Chem. 98 12535

    [22]

    Kroger P M, Riley S J 1977 J. Chem. Phys. 67 4483

  • [1]

    Vacher J R, Jorand F, Blin-Simiand N, Pasquiers S 2008 Int. J. Mass Spectrom. 273 117

    [2]

    Mu Y, Mellouki A 2000 J. Photochem. Photobiol. A 134 31

    [3]

    Haas Y 2004 Photochem. Photobiol. Sci. 3 6

    [4]

    Noyes W A, Porter G B, Jolley J E 1956 Chem. Rev. 56 49

    [5]

    Diau E W G, Kötting C, Zewail A H 2003 Chem. Phys. Lett. 380 411

    [6]

    Chen W K, Ho J W, Cheng P Y 2005 J. Phys. Chem. A 109 6805

    [7]

    Chen W K, Cheng P Y 2005 J. Phys. Chem. A 109 6818

    [8]

    Chen W K, Ho J W, Cheng P Y 2005 Chem. Phys. Lett. 415 291

    [9]

    O Toole L, Brint P, Kosmidis C, Boulakis G, Tsekeris P 1991 J. Chem. Soc., Faraday Trans. 87 3343

    [10]

    Loo R O, Hall G E, Houston P L 1989 J. Chem. Phys. 90 4222

    [11]

    Zou P, McGivern W S, North S W 2000 Phys. Chem. Chem. Phys. 2 3785

    [12]

    Wei Z, Zhang F, Wang Y, Zhang B 2007 Chin. J. Chem. Phys. 20 419

    [13]

    Zhang R R, Qin C C, Long J Y, Yang M H, Zhang B 2012 Acta Phys.-Chim. Sin. 28 522

    [14]

    Sun C K, Hu Z, Yang X, Jin M X, Hu W C, Ding D J 2011 Chem. Res. Chinese Universities 27 508

    [15]

    Shen L, Zhang B, Suits A G 2010 J. Phys. Chem. A 114 3114

    [16]

    Traeger J C 1985 Org. Mass Spectrom. 20 223

    [17]

    Traeger J C, McLouglin R G, Nicholson A J C 1982 J. Am. Chem. Soc. 104 5318

    [18]

    Owrutsky J C, Baronavski A P 1998 J. Chem. Phys. 108 6652

    [19]

    Mordaunt D H, Osborn D L, Neumark D M 1998 J. Chem. Phys. 108 2448

    [20]

    Shibata T, Li H Y, Katayanagi H, Suzuki T 1998 J. Phys. Chem. A 102 3643

    [21]

    Deshmukh S, Myers J D, Xantheas S S, Hess W P 1994 J. Phys. Chem. 98 12535

    [22]

    Kroger P M, Riley S J 1977 J. Chem. Phys. 67 4483

  • [1] 贾韫哲, 孟胜. 光激发下水体系的超快动力学. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240047
    [2] 陶琛玉, 雷建廷, 余璇, 骆炎, 马新文, 张少锋. 阿秒脉冲的发展及其在原子分子超快动力学中的应用. 物理学报, 2023, 72(5): 053202. doi: 10.7498/aps.72.20222436
    [3] 赵嘉琳, 程开, 于雪克, 赵纪军, 苏艳. 几种典型含能材料光激发解离的含时密度泛函理论研究. 物理学报, 2021, 70(20): 203301. doi: 10.7498/aps.70.20210670
    [4] 布玛丽亚·阿布力米提, 凌丰姿, 邓绪兰, 魏洁, 宋辛黎, 向梅, 张冰. 2-甲基吡嗪分子激发态系间交叉过程的飞秒时间分辨光电子影像研究. 物理学报, 2020, 69(10): 103301. doi: 10.7498/aps.69.20200092
    [5] 秦朝朝, 崔明焕, 宋迪迪, 何伟. CdSeS合金结构量子点的多激子俄歇复合过程. 物理学报, 2019, 68(10): 107801. doi: 10.7498/aps.68.20190291
    [6] 钟梓源, 何凯, 苑云, 汪韬, 高贵龙, 闫欣, 李少辉, 尹飞, 田进寿. 低温生长铝镓砷光折变效应的研究. 物理学报, 2019, 68(16): 167801. doi: 10.7498/aps.68.20190459
    [7] 叶树集, 李传召, 张佳慧, 谈军军, 罗毅. 生物分子结合水的结构与动力学研究进展. 物理学报, 2019, 68(1): 013101. doi: 10.7498/aps.68.20181273
    [8] 汪小丽, 姚关心, 杨新艳, 秦正波, 郑贤锋, 崔执凤. 甲胺分子的紫外光解离动力学实验研究. 物理学报, 2018, 67(24): 243301. doi: 10.7498/aps.67.20181731
    [9] 陈聪, 梁盼, 胡蓉蓉, 贾天卿, 孙真荣, 冯东海. 抽运-自旋定向-探测技术及其应用. 物理学报, 2018, 67(9): 097201. doi: 10.7498/aps.67.20180244
    [10] 颜逸辉, 刘玉柱, 丁鹏飞, 尹文怡. 利用速度成像技术研究碘乙烷多光子电离解离动力学. 物理学报, 2018, 67(20): 203301. doi: 10.7498/aps.67.20181468
    [11] 秦朝朝, 黄燕, 彭玉峰. Br2分子在360610 nm的光解离动力学研究. 物理学报, 2017, 66(19): 193301. doi: 10.7498/aps.66.193301
    [12] 刘玉柱, 肖韶荣, 王俊锋, 何仲福, 邱学军, Gregor Knopp. 氟利昂F1110分子在飞秒激光脉冲作用下的多光子解离动力学. 物理学报, 2016, 65(11): 113301. doi: 10.7498/aps.65.113301
    [13] 刘玉柱, 陈云云, 郑改革, 金峰, Gregor Knopp. 氟利昂F113分子在飞秒激光作用下的多光子电离解离动力学. 物理学报, 2016, 65(5): 053302. doi: 10.7498/aps.65.053302
    [14] 刘玉柱, 邓绪兰, 李帅, 管跃, 李静, 龙金友, 张冰. 氟利昂F114B2分子在飞秒紫外辐射下的解离动力学. 物理学报, 2016, 65(19): 193301. doi: 10.7498/aps.65.193301
    [15] 杨雪, 闫冰, 连科研, 丁大军. 1,2-环己二酮基态光解离反应的理论研究. 物理学报, 2015, 64(21): 213101. doi: 10.7498/aps.64.213101
    [16] 姚洪斌, 张季, 彭敏, 李文亮. H2+在强激光场中的解离及其量子调控的理论研究. 物理学报, 2014, 63(19): 198202. doi: 10.7498/aps.63.198202
    [17] 李霞, 冯东海, 何红燕, 贾天卿, 单璐繁, 孙真荣, 徐至展. CdTe/CdS核壳结构量子点超快载流子动力学. 物理学报, 2012, 61(19): 197801. doi: 10.7498/aps.61.197801
    [18] 刘玉柱, 肖韶荣, 张成义, 郑改革, 陈云云. 离子速度成像系统校准及1,4-氯溴丁烷的紫外光解动力学. 物理学报, 2012, 61(19): 193301. doi: 10.7498/aps.61.193301
    [19] 李 瑞, 闫 冰, 赵书涛, 郭庆群, 连科研, 田传进, 潘守甫. CH3I分子的光解离的自旋-轨道从头计算. 物理学报, 2008, 57(7): 4130-4133. doi: 10.7498/aps.57.4130
    [20] 王 仲, 张立敏, 王 峰, 李 江, 俞书勤. 281—332nm SO+2的光碎片激发谱研究. 物理学报, 2003, 52(12): 3027-3034. doi: 10.7498/aps.52.3027
计量
  • 文章访问数:  5240
  • PDF下载量:  291
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-12
  • 修回日期:  2016-11-01
  • 刊出日期:  2017-01-20

/

返回文章
返回