搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电学方法调控磁化翻转和磁畴壁运动的研究进展

张楠 张保 杨美音 蔡凯明 盛宇 李予才 邓永城 王开友

引用本文:
Citation:

电学方法调控磁化翻转和磁畴壁运动的研究进展

张楠, 张保, 杨美音, 蔡凯明, 盛宇, 李予才, 邓永城, 王开友

Progress of electrical control magnetization reversal and domain wall motion

Zhang Nan, Zhang Bao, Yang Mei-Yin, Cai Kai-Ming, Sheng Yu, Li Yu-Cai, Deng Yong-Cheng, Wang Kai-You
PDF
导出引用
  • 电学方法调控磁性材料及器件的磁性是当前自旋电子学研究的热点之一.本综述简要介绍利用电学方法调控磁化翻转和磁畴壁运动的研究进展.首先简述了自旋极化电流的产生、自旋流与局域磁矩之间的作用原理以及对应的Landau-Lifshitz-Gilbert-Slonczewski磁动力学方程;然后分别讨论了单层磁性材料、铁磁层/重金属、铁磁层/非磁金属/铁磁层等不同结构中的电流诱导磁化翻转或驱动畴壁运动;最后介绍了利用压电效应、磁电耦合效应和栅极电场效应三种电压方式对磁矩的调控.在此基础上,对电学方法调控磁化翻转和磁畴壁运动进行了总结和展望.
    Electrical control of spins in magnetic materials and devices is one of the most important research topics in spintronics. We briefly describe the recent progress of electrical manipulations of magnetization reversal and domain wall motion.This review consists of three parts:basic concepts,magnetization manipulation by electrical current and voltage methods,and the future prospects of the field.The basic concepts,including the generation of the spin current,the interaction between the spin current and localized magnetization,and the magnetic dynamic Landau-Lifshitz-Gilbert-Slonczewski equation are introduced first.In the second part,we reviewed the progress of the magnetization controlled by electrical current and voltage. Firstly we review the electrical current control of the magnetization and domain wall motion.Three widely used structures, single-layer magnets,ferromagnet/heavy metal and ferromagnet/nonmagnetic metal/ferromagnet,are reviewed when current is used to induce magnetization reversal or drive domain wall motion.In a single-layer magnetic material structure,domain wall can be effectively driven by electrical current through spin transfer torque.The factors influencing the domain wall trapping and motion are also discussed.The electrical current control of the skyrmions has big potential applications due to much lower current density.Using the Dresselhaus and Rashba spin orbital coupling,the electrical current can also directly reverse the magnetization of single magnetic or antiferromagnetic layer.Then,we review the electrical current switching the magnetization of the ferromagnetic layer in ferromagnetic/heavy metal structures,where both spin Hall effect and Rashba effect can contribute to the current switching magnetization in such device structures. To identify the relative contributions of these two mechanisms,several quantitative studies are carried,concluding that spin Hall effect plays a major role,which is summarized in this review.Finally,we review the current switching magnetization of free layers in spin valve and magnetic tunnel junctions (MTJs) by spin transfer torque.We also discuss the approaches to the decrease of the critical current density in MTJs,which is desired for future applications.Alternatively,the electric field can also be used to manipulate the magnetization,where three methods are reviewed. Applying an electric field to the ferromagnetic/piezoelectric heterostructures,which changes the crystal structure of magnetic film through piezoelectric effects,realizes the change of the magnetic anisotropy of the ferromagnetic layer.In ferromagnetic/ferroelectric heterostructures,electric field changes the spin distribution and orbital hybridization at the surface of magnetic film through the magnet-electric coupling effects,and then controls the magnetization of the ferromagnetic layer.In ferromagnetic metal (semiconductor)/dielectric/metal structure,electric field controls the electron accumulation or depletion at the surface of the ferromagnetic metal or semiconductor,the change of the electron density in the magnetic layer in turn affects the magnetic exchange interaction and magnetic anisotropy.Finally,we present the prospects for the development of electrical control magnetization reversal and domain wall motion for future applications.
      通信作者: 王开友, kywang@semi.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2014CB643903)和国家自然科学基金(批准号:61225021,11174272,11474272)资助的课题.
      Corresponding author: Wang Kai-You, kywang@semi.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2014CB643903) and the National Natural Science Foundation of China (Grant Nos. 61225021, 11174272, 11474272).
    [1]

    Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1

    [2]

    Thiaville A, Nakatani Y, Miltat J, Suzuki Y 2005 Europhys. Lett. 69 990

    [3]

    Li Z, Zhang S 2004 Phys. Rev. B 70 024417

    [4]

    Zhang S, Li Z 2004 Phys. Rev. Lett. 93 127204

    [5]

    Berger L 1978 J. Appl. Phys. 49 2156

    [6]

    Freitas P, Berger L 1985 J. Appl. Phys. 57 1266

    [7]

    Wang K, Irvine A, Wunderlich J, Edmonds K, Rushforth A, Campion R, Foxon C, Williams D, Gallagher B 2008 New J. Phys. 10 085007

    [8]

    Yamanouchi M, Chiba D, Matsukura F, Ohno H 2004 Nature 428 539

    [9]

    Wang K, Irvine A, Campion R, Foxon C, Wunderlich J, Williams D, Gallagher B 2009 J. Magn. Magn. Mater. 321 971

    [10]

    Wang K, Edmonds K, Irvine A, Tatara G, de Ranieri E, Wunderlich J, Olejnik K, Rushforth A, Campion R, Williams D 2010 Appl. Phys. Lett. 97 262102

    [11]

    Bauer U, Emori S, Beach G S 2013 Nature Nanotech. 8 411

    [12]

    Miron I M, Moore T, Szambolics H, Buda-Prejbeanu L D, Auffret S, Rodmacq B, Pizzini S, Vogel J, Bonfim M, Schuhl A 2011 Nature Mater. 10 419

    [13]

    Parkin S S 2004 US Patent 6834005[2004]

    [14]

    Parkin S S, Hayashi M, Thomas L 2008 Science 320 190

    [15]

    Thomas L, Yang S H, Ryu K S, Hughes B, Rettner C, Wang D S, Tsai C H, Shen K H, Parkin S S P 2009 Nature Phys. 5 656

    [16]

    Endo M, Matsukura F, Ohno H 2010 Appl. Phys. Lett. 97 222501

    [17]

    Fang D, Kurebayashi H, Wunderlich J, Vyborny K, Zarbo L, Campion R, Casiraghi A, Gallagher B, Jungwirth T, Ferguson A 2011 Nature Nanotech. 6 413

    [18]

    Li Y, Cao Y, Wei G, Li Y, Ji Y, Wang K, Edmonds K, Campion R, Rushforth A, Foxon C 2013 Appl. Phys. Lett. 103 022401

    [19]

    Marti X, Fina I, Frontera C, Liu J, Wadley P, He Q, Paull R, Clarkson J, Kudrnovsky J, Turek I 2014 Nature Mater. 13 367

    [20]

    Jungwirth T, Marti X, Wadley P, Wunderlich J 2016 Nature Nanotech. 11 231

    [21]

    Keffer F, Kittel C 1952 Phys. Rev. 85 329

    [22]

    Jonietz F, Mhlbauer S, Pfleiderer C, Neubauer A, Mnzer W, Bauer A, Adams T, Georgii R, Böni P, Duine R 2010 Science 330 1648

    [23]

    Yu X, Kanazawa N, Zhang W, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y, Tokura Y 2012 Nat. Commun. 3 988

    [24]

    Wei Z Y, Liu E K, Li Y, Xu G Z, Zhang X M, Liu G D, Xi X K, Zhang H W, Wang W H, Wu G H 2015 Adv. Electron. Mater. 1 1500076

    [25]

    Wang W, Zhang Y, Xu G, Peng L, Ding B, Wang Y, Hou Z, Zhang X, Li X, Liu E 2016 Adv. Mater. 28 6887

    [26]

    Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189

    [27]

    Miron I M, Gaudin G, Auffret S, Rodmacq B, Schuhl A, Pizzini S, Vogel J, Gambardella P 2010 Nature Mater. 9 230

    [28]

    Liu L, Pai C F, Li Y, Tseng H, Ralph D, Buhrman R 2012 Science 336 555

    [29]

    Liu L, Lee O, Gudmundsen T, Ralph D, Buhrman R 2012 Phys. Rev. Lett. 109 096602

    [30]

    Fan X, Wu J, Chen Y, Jerry M J, Zhang H, Xiao J Q 2013 Nat. Commun. 4 1799

    [31]

    Yang M, Cai K, Ju H, Edmonds K W, Yang G, Liu S, Li B, Zhang B, Sheng Y, Wang S 2016 Sci. Rep. 6 20778

    [32]

    Lee O, Liu L, Pai C, Li Y, Tseng H, Gowtham P, Park J, Ralph D, Buhrman R 2014 Phys. Rev. B 89 024418

    [33]

    Bhowmik D, You L, Salahuddin S 2014 Nature Nanotech. 9 59

    [34]

    Qiu X, Narayanapillai K, Wu Y, Deorani P, Yang D H, Noh W S, Park J H, Lee K J, Lee H W, Yang H 2015 Nature Nanotech. 10 333

    [35]

    Emori S, Bauer U, Ahn S M, Martinez E, Beach G S 2013 Nature Mater. 12 611

    [36]

    Yu G, Upadhyaya P, Fan Y, Alzate J G, Jiang W, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y 2014 Nature Nanotech. 9 548

    [37]

    Pai C F, Mann M, Tan A J, Beach G S 2016 arXiv:1601.05854[cond-mat.mtrl-sci]

    [38]

    Yu G, Chang L T, Akyol M, Upadhyaya P, He C, Li X, Wong K L, Amiri P K, Wang K L 2014 Appl. Phys. Lett. 105 102411

    [39]

    Akyol M, Yu G, Alzate J G, Upadhyaya P, Li X, Wong K L, Ekicibil A, Amiri P K, Wang K L 2015 Appl. Phys. Lett. 106 162409

    [40]

    You L, Lee O, Bhowmik D, Labanowski D, Hong J, Bokor J, Salahuddin S 2015 Proc. Nat. Acad. Sci. USA 112 10310

    [41]

    Torrejon J, Garcia-Sanchez F, Taniguchi T, Sinha J, Mitani S, Kim J V, Hayashi M 2015 Phys. Rev. B 91 214434

    [42]

    Brink A V D, Vermijs, G, Solignac A, Koo J, Kohlhepp J T, Swagten H J, Koopmans B 2016 Nat. Commun. 7 10854

    [43]

    Fukami S, Zhang C, Dutta Gupta S, Kurenkov A, Ohno H 2016 Nature Mater. 15 535

    [44]

    Cai K, Yang M, Ju H, Edmonds K W, Li B, Sheng Y, Zhang B, Zhang N, Liu S, Ji Y 2016 arXiv:1604.05561[cond-mat.mtrl-sci]

    [45]

    Katine J, Albert F, Buhrman R, Myers E, Ralph D 2000 Phys. Rev. Lett. 84 3149

    [46]

    Huai Y, Albert F, Nguyen P, Pakala M, Valet T 2004 Appl. Phys. Lett. 84 3118

    [47]

    Fuchs G, Emley N, Krivorotov I, Braganca P, Ryan E, Kiselev S, Sankey J, Katine J, Ralph D, Buhrman R 2004 Appl. Phys. Lett. 85 1205

    [48]

    Sun J Z 2000 Phys. Rev. B 62 570

    [49]

    Mangin S, Ravelosona D, Katine J, Carey M, Terris B, Fullerton E E 2006 Nature Mater. 5 210

    [50]

    Yagami K, Tulapurkar A, Fukushima A, Suzuki Y 2004 Appl. Phys. Lett. 85 5634

    [51]

    Khvalkovskiy A, Apalkov D, Watts S, Chepulskii R, Beach R, Ong A, Tang X, Driskill-Smith A, Butler W, Visscher P 2013 J. Phys. D:Appl. Phys. 46 074001

    [52]

    Albert F, Emley N, Myers E, Ralph D, Buhrman R 2002 Phys. Rev. Lett. 89 226802

    [53]

    Jiang Y, Abe S, Ochiai T, Nozaki T, Hirohata A, Tezuka N, Inomata K 2004 Phys. Rev. Lett. 92 167204

    [54]

    Jiang Y, Nozaki T, Abe S, Ochiai T, Hirohata A, Tezuka N, Inomata K 2004 Nature Mater. 3 361

    [55]

    Hosomi M, Yamagishi H, Yamamoto T, Bessho K, Higo Y, Yamane K, Yamada H, Shoji M, Hachino H, Fukumoto C 2005 IEDM Tech. Dig. IEEE Int. Washington, D.C, US, December 5-72005, p459

    [56]

    Eerenstein W, Mathur N, Scott J F 2006 Nature 442 759

    [57]

    Li Y, Luo W, Zhu L, Zhao J, Wang K, Wang K Y 2015 J. Magn. Magn. Mater. 375 148

    [58]

    Zhang B, Meng K K, Yang M Y, Edmonds K, Zhang H, Cai K M, Sheng Y, Zhang N, Ji Y, Zhao J H, Zheng H Z, Wang K Y 2016 Sci. Rep. 6 28458

    [59]

    Hu J M, Yang T, Wang J, Huang H, Zhang J, Chen L Q, Nan C W 2015 Nano Lett. 15 616

    [60]

    Li P, Chen A, Li D, Zhao Y, Zhang S, Yang L, Liu Y, Zhu M, Zhang H, Han X 2014 Adv. Mater. 26 4320

    [61]

    Zhang S, Zhao Y, Li P, Yang J, Rizwan S, Zhang J, Seidel J, Qu T, Yang Y, Luo Z 2012 Phys. Rev. Lett. 108 137203

    [62]

    Moubah R, Magnus F, Hjörvarsson B, Andersson G 2014 J. Appl. Phys. 115 053905

    [63]

    Wu H, Chai G, Zhou T, Zhang Z, Kitamura T, Zhou H 2014 J. Appl. Phys. 115 114105

    [64]

    Wang J, Hu J, Yang T, Feng M, Zhang J, Chen L, Nan C 2014 Sci. Rep. 4 4553

    [65]

    Rushforth A, de Ranieri E, Zemen J, Wunderlich J, Edmonds K, King C, Ahmad E, Campion R, Foxon C, Gallagher B 2008 Phys. Rev. B 78 085314

    [66]

    Lei N, Devolder T, Agnus G, Aubert P, Daniel L, Kim J V, Zhao W, Trypiniotis T, Cowburn R P, Chappert C 2013 Nat. Commun. 4 1378

    [67]

    Dean J, Bryan M, Schrefl T, Allwood D 2011 J. Appl. Phys. 109 023915

    [68]

    Wu T, Zurbuchen M, Saha S, Wang R V, Streiffer S, Mitchell J 2006 Phys. Rev. B 73 134416

    [69]

    Duan C G, Jaswal S S, Tsymbal E Y 2006 Phys. Rev. Lett. 97 047201

    [70]

    Cherifi R O, Ivanovskaya V, Phillips L C, Zobelli A, Infante I C, Jacquet E, Garcia V, Fusil S, Briddon P R, Guiblin N, Mougin, Unal A A, Kronast F, Valencia, Dkhil B, Barthelemy A, Bibes M 2014 Nature Mater. 13 345

    [71]

    Nan T, Zhou Z, Liu M, Yang X, Gao Y, Assaf B A, Lin H, Velu S, Wang X, Luo H 2014 Sci. Rep. 4 3688

    [72]

    Maruyama T, Shiota Y, Nozaki T, Ohta K, Toda N, Mizuguchi M, Tulapurkar A, Shinjo T, Shiraishi M, Mizukami S 2009 Nature Nanotech. 4 158

    [73]

    Yan Y, Zhou X, Li F, Cui B, Wang Y, Wang G, Pan F, Song C 2015 Appl. Phys. Lett. 107 122407

    [74]

    Wang W G, Li M, Hageman S, Chien C 2012 Nature Mater. 11 64

    [75]

    Kita K, Abraham D W, Gajek M J, Worledge D 2012 J. Appl. Phys. 112 033919

    [76]

    Li X, Yu G, Wu H, Ong P, Wong K, Hu Q, Ebrahimi F, Upadhyaya P, Akyol M, Kioussis N 2015 Appl. Phys. Lett. 107 142403

    [77]

    Chiba D, Kawaguchi M, Fukami S, Ishiwata N, Shimamura K, Kobayashi K, Ono T 2012 Nat. Commun. 3 888

    [78]

    Bauer U, Emori S, Beach G S 2012 Appl. Phys. Lett. 100 192408

    [79]

    Bauer U, Emori S, Beach G S 2012 Appl. Phys. Lett. 101 172403

  • [1]

    Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1

    [2]

    Thiaville A, Nakatani Y, Miltat J, Suzuki Y 2005 Europhys. Lett. 69 990

    [3]

    Li Z, Zhang S 2004 Phys. Rev. B 70 024417

    [4]

    Zhang S, Li Z 2004 Phys. Rev. Lett. 93 127204

    [5]

    Berger L 1978 J. Appl. Phys. 49 2156

    [6]

    Freitas P, Berger L 1985 J. Appl. Phys. 57 1266

    [7]

    Wang K, Irvine A, Wunderlich J, Edmonds K, Rushforth A, Campion R, Foxon C, Williams D, Gallagher B 2008 New J. Phys. 10 085007

    [8]

    Yamanouchi M, Chiba D, Matsukura F, Ohno H 2004 Nature 428 539

    [9]

    Wang K, Irvine A, Campion R, Foxon C, Wunderlich J, Williams D, Gallagher B 2009 J. Magn. Magn. Mater. 321 971

    [10]

    Wang K, Edmonds K, Irvine A, Tatara G, de Ranieri E, Wunderlich J, Olejnik K, Rushforth A, Campion R, Williams D 2010 Appl. Phys. Lett. 97 262102

    [11]

    Bauer U, Emori S, Beach G S 2013 Nature Nanotech. 8 411

    [12]

    Miron I M, Moore T, Szambolics H, Buda-Prejbeanu L D, Auffret S, Rodmacq B, Pizzini S, Vogel J, Bonfim M, Schuhl A 2011 Nature Mater. 10 419

    [13]

    Parkin S S 2004 US Patent 6834005[2004]

    [14]

    Parkin S S, Hayashi M, Thomas L 2008 Science 320 190

    [15]

    Thomas L, Yang S H, Ryu K S, Hughes B, Rettner C, Wang D S, Tsai C H, Shen K H, Parkin S S P 2009 Nature Phys. 5 656

    [16]

    Endo M, Matsukura F, Ohno H 2010 Appl. Phys. Lett. 97 222501

    [17]

    Fang D, Kurebayashi H, Wunderlich J, Vyborny K, Zarbo L, Campion R, Casiraghi A, Gallagher B, Jungwirth T, Ferguson A 2011 Nature Nanotech. 6 413

    [18]

    Li Y, Cao Y, Wei G, Li Y, Ji Y, Wang K, Edmonds K, Campion R, Rushforth A, Foxon C 2013 Appl. Phys. Lett. 103 022401

    [19]

    Marti X, Fina I, Frontera C, Liu J, Wadley P, He Q, Paull R, Clarkson J, Kudrnovsky J, Turek I 2014 Nature Mater. 13 367

    [20]

    Jungwirth T, Marti X, Wadley P, Wunderlich J 2016 Nature Nanotech. 11 231

    [21]

    Keffer F, Kittel C 1952 Phys. Rev. 85 329

    [22]

    Jonietz F, Mhlbauer S, Pfleiderer C, Neubauer A, Mnzer W, Bauer A, Adams T, Georgii R, Böni P, Duine R 2010 Science 330 1648

    [23]

    Yu X, Kanazawa N, Zhang W, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y, Tokura Y 2012 Nat. Commun. 3 988

    [24]

    Wei Z Y, Liu E K, Li Y, Xu G Z, Zhang X M, Liu G D, Xi X K, Zhang H W, Wang W H, Wu G H 2015 Adv. Electron. Mater. 1 1500076

    [25]

    Wang W, Zhang Y, Xu G, Peng L, Ding B, Wang Y, Hou Z, Zhang X, Li X, Liu E 2016 Adv. Mater. 28 6887

    [26]

    Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189

    [27]

    Miron I M, Gaudin G, Auffret S, Rodmacq B, Schuhl A, Pizzini S, Vogel J, Gambardella P 2010 Nature Mater. 9 230

    [28]

    Liu L, Pai C F, Li Y, Tseng H, Ralph D, Buhrman R 2012 Science 336 555

    [29]

    Liu L, Lee O, Gudmundsen T, Ralph D, Buhrman R 2012 Phys. Rev. Lett. 109 096602

    [30]

    Fan X, Wu J, Chen Y, Jerry M J, Zhang H, Xiao J Q 2013 Nat. Commun. 4 1799

    [31]

    Yang M, Cai K, Ju H, Edmonds K W, Yang G, Liu S, Li B, Zhang B, Sheng Y, Wang S 2016 Sci. Rep. 6 20778

    [32]

    Lee O, Liu L, Pai C, Li Y, Tseng H, Gowtham P, Park J, Ralph D, Buhrman R 2014 Phys. Rev. B 89 024418

    [33]

    Bhowmik D, You L, Salahuddin S 2014 Nature Nanotech. 9 59

    [34]

    Qiu X, Narayanapillai K, Wu Y, Deorani P, Yang D H, Noh W S, Park J H, Lee K J, Lee H W, Yang H 2015 Nature Nanotech. 10 333

    [35]

    Emori S, Bauer U, Ahn S M, Martinez E, Beach G S 2013 Nature Mater. 12 611

    [36]

    Yu G, Upadhyaya P, Fan Y, Alzate J G, Jiang W, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y 2014 Nature Nanotech. 9 548

    [37]

    Pai C F, Mann M, Tan A J, Beach G S 2016 arXiv:1601.05854[cond-mat.mtrl-sci]

    [38]

    Yu G, Chang L T, Akyol M, Upadhyaya P, He C, Li X, Wong K L, Amiri P K, Wang K L 2014 Appl. Phys. Lett. 105 102411

    [39]

    Akyol M, Yu G, Alzate J G, Upadhyaya P, Li X, Wong K L, Ekicibil A, Amiri P K, Wang K L 2015 Appl. Phys. Lett. 106 162409

    [40]

    You L, Lee O, Bhowmik D, Labanowski D, Hong J, Bokor J, Salahuddin S 2015 Proc. Nat. Acad. Sci. USA 112 10310

    [41]

    Torrejon J, Garcia-Sanchez F, Taniguchi T, Sinha J, Mitani S, Kim J V, Hayashi M 2015 Phys. Rev. B 91 214434

    [42]

    Brink A V D, Vermijs, G, Solignac A, Koo J, Kohlhepp J T, Swagten H J, Koopmans B 2016 Nat. Commun. 7 10854

    [43]

    Fukami S, Zhang C, Dutta Gupta S, Kurenkov A, Ohno H 2016 Nature Mater. 15 535

    [44]

    Cai K, Yang M, Ju H, Edmonds K W, Li B, Sheng Y, Zhang B, Zhang N, Liu S, Ji Y 2016 arXiv:1604.05561[cond-mat.mtrl-sci]

    [45]

    Katine J, Albert F, Buhrman R, Myers E, Ralph D 2000 Phys. Rev. Lett. 84 3149

    [46]

    Huai Y, Albert F, Nguyen P, Pakala M, Valet T 2004 Appl. Phys. Lett. 84 3118

    [47]

    Fuchs G, Emley N, Krivorotov I, Braganca P, Ryan E, Kiselev S, Sankey J, Katine J, Ralph D, Buhrman R 2004 Appl. Phys. Lett. 85 1205

    [48]

    Sun J Z 2000 Phys. Rev. B 62 570

    [49]

    Mangin S, Ravelosona D, Katine J, Carey M, Terris B, Fullerton E E 2006 Nature Mater. 5 210

    [50]

    Yagami K, Tulapurkar A, Fukushima A, Suzuki Y 2004 Appl. Phys. Lett. 85 5634

    [51]

    Khvalkovskiy A, Apalkov D, Watts S, Chepulskii R, Beach R, Ong A, Tang X, Driskill-Smith A, Butler W, Visscher P 2013 J. Phys. D:Appl. Phys. 46 074001

    [52]

    Albert F, Emley N, Myers E, Ralph D, Buhrman R 2002 Phys. Rev. Lett. 89 226802

    [53]

    Jiang Y, Abe S, Ochiai T, Nozaki T, Hirohata A, Tezuka N, Inomata K 2004 Phys. Rev. Lett. 92 167204

    [54]

    Jiang Y, Nozaki T, Abe S, Ochiai T, Hirohata A, Tezuka N, Inomata K 2004 Nature Mater. 3 361

    [55]

    Hosomi M, Yamagishi H, Yamamoto T, Bessho K, Higo Y, Yamane K, Yamada H, Shoji M, Hachino H, Fukumoto C 2005 IEDM Tech. Dig. IEEE Int. Washington, D.C, US, December 5-72005, p459

    [56]

    Eerenstein W, Mathur N, Scott J F 2006 Nature 442 759

    [57]

    Li Y, Luo W, Zhu L, Zhao J, Wang K, Wang K Y 2015 J. Magn. Magn. Mater. 375 148

    [58]

    Zhang B, Meng K K, Yang M Y, Edmonds K, Zhang H, Cai K M, Sheng Y, Zhang N, Ji Y, Zhao J H, Zheng H Z, Wang K Y 2016 Sci. Rep. 6 28458

    [59]

    Hu J M, Yang T, Wang J, Huang H, Zhang J, Chen L Q, Nan C W 2015 Nano Lett. 15 616

    [60]

    Li P, Chen A, Li D, Zhao Y, Zhang S, Yang L, Liu Y, Zhu M, Zhang H, Han X 2014 Adv. Mater. 26 4320

    [61]

    Zhang S, Zhao Y, Li P, Yang J, Rizwan S, Zhang J, Seidel J, Qu T, Yang Y, Luo Z 2012 Phys. Rev. Lett. 108 137203

    [62]

    Moubah R, Magnus F, Hjörvarsson B, Andersson G 2014 J. Appl. Phys. 115 053905

    [63]

    Wu H, Chai G, Zhou T, Zhang Z, Kitamura T, Zhou H 2014 J. Appl. Phys. 115 114105

    [64]

    Wang J, Hu J, Yang T, Feng M, Zhang J, Chen L, Nan C 2014 Sci. Rep. 4 4553

    [65]

    Rushforth A, de Ranieri E, Zemen J, Wunderlich J, Edmonds K, King C, Ahmad E, Campion R, Foxon C, Gallagher B 2008 Phys. Rev. B 78 085314

    [66]

    Lei N, Devolder T, Agnus G, Aubert P, Daniel L, Kim J V, Zhao W, Trypiniotis T, Cowburn R P, Chappert C 2013 Nat. Commun. 4 1378

    [67]

    Dean J, Bryan M, Schrefl T, Allwood D 2011 J. Appl. Phys. 109 023915

    [68]

    Wu T, Zurbuchen M, Saha S, Wang R V, Streiffer S, Mitchell J 2006 Phys. Rev. B 73 134416

    [69]

    Duan C G, Jaswal S S, Tsymbal E Y 2006 Phys. Rev. Lett. 97 047201

    [70]

    Cherifi R O, Ivanovskaya V, Phillips L C, Zobelli A, Infante I C, Jacquet E, Garcia V, Fusil S, Briddon P R, Guiblin N, Mougin, Unal A A, Kronast F, Valencia, Dkhil B, Barthelemy A, Bibes M 2014 Nature Mater. 13 345

    [71]

    Nan T, Zhou Z, Liu M, Yang X, Gao Y, Assaf B A, Lin H, Velu S, Wang X, Luo H 2014 Sci. Rep. 4 3688

    [72]

    Maruyama T, Shiota Y, Nozaki T, Ohta K, Toda N, Mizuguchi M, Tulapurkar A, Shinjo T, Shiraishi M, Mizukami S 2009 Nature Nanotech. 4 158

    [73]

    Yan Y, Zhou X, Li F, Cui B, Wang Y, Wang G, Pan F, Song C 2015 Appl. Phys. Lett. 107 122407

    [74]

    Wang W G, Li M, Hageman S, Chien C 2012 Nature Mater. 11 64

    [75]

    Kita K, Abraham D W, Gajek M J, Worledge D 2012 J. Appl. Phys. 112 033919

    [76]

    Li X, Yu G, Wu H, Ong P, Wong K, Hu Q, Ebrahimi F, Upadhyaya P, Akyol M, Kioussis N 2015 Appl. Phys. Lett. 107 142403

    [77]

    Chiba D, Kawaguchi M, Fukami S, Ishiwata N, Shimamura K, Kobayashi K, Ono T 2012 Nat. Commun. 3 888

    [78]

    Bauer U, Emori S, Beach G S 2012 Appl. Phys. Lett. 100 192408

    [79]

    Bauer U, Emori S, Beach G S 2012 Appl. Phys. Lett. 101 172403

  • [1] 薛文明, 李金, 何朝宇, 欧阳滔, 罗朝波, 唐超, 钟建新. H-Pb-Cl中可调控的巨型Rashba自旋劈裂和量子自旋霍尔效应. 物理学报, 2023, 72(5): 057101. doi: 10.7498/aps.72.20221493
    [2] 王日兴, 曾逸涵, 赵婧莉, 李连, 肖运昌. 自旋轨道矩协助自旋转移矩驱动磁化强度翻转. 物理学报, 2023, 72(8): 087202. doi: 10.7498/aps.72.20222433
    [3] 李家锐, 王梓安, 徐彤彤, 张莲莲, 公卫江. 一维${\cal {PT}}$对称非厄米自旋轨道耦合Su-Schrieffer-Heeger模型的拓扑性质. 物理学报, 2022, 71(17): 177302. doi: 10.7498/aps.71.20220796
    [4] 王志梅, 王虹, 薛乃涛, 成高艳. 自旋轨道耦合量子点系统中的量子相干. 物理学报, 2022, 71(7): 078502. doi: 10.7498/aps.71.20212111
    [5] 金冬月, 曹路明, 王佑, 贾晓雪, 潘永安, 周钰鑫, 雷鑫, 刘圆圆, 杨滢齐, 张万荣. 基于工艺偏差的自旋转移矩辅助压控磁各向异性磁隧道结电学模型及其应用研究. 物理学报, 2022, 71(10): 107501. doi: 10.7498/aps.71.20211700
    [6] 张爱霞, 姜艳芳, 薛具奎. 光晶格中自旋轨道耦合玻色-爱因斯坦凝聚体的非线性能谱特性. 物理学报, 2021, 70(20): 200302. doi: 10.7498/aps.70.20210705
    [7] 薛海斌, 段志磊, 陈彬, 陈建宾, 邢丽丽. 自旋轨道耦合Su-Schrieffer-Heeger原子链系统的电子输运特性. 物理学报, 2021, 70(8): 087301. doi: 10.7498/aps.70.20201742
    [8] 施婷婷, 汪六九, 王璟琨, 张威. 自旋轨道耦合量子气体中的一些新进展. 物理学报, 2020, 69(1): 016701. doi: 10.7498/aps.69.20191241
    [9] 梁滔, 李铭. 自旋轨道耦合系统中的整数量子霍尔效应. 物理学报, 2019, 68(11): 117101. doi: 10.7498/aps.68.20190037
    [10] 李志强, 王月明. 一维谐振子束缚的自旋轨道耦合玻色气体. 物理学报, 2019, 68(17): 173201. doi: 10.7498/aps.68.20190143
    [11] 杨圆, 陈帅, 李小兵. Rashba自旋轨道耦合下square-octagon晶格的拓扑相变. 物理学报, 2018, 67(23): 237101. doi: 10.7498/aps.67.20180624
    [12] 盛宇, 张楠, 王开友, 马星桥. 自旋轨道矩调控的垂直磁各向异性四态存储器结构. 物理学报, 2018, 67(11): 117501. doi: 10.7498/aps.67.20180216
    [13] 刘胜利, 厉建峥, 程杰, 王海云, 李永涛, 张红光, 李兴鳌. 强自旋轨道耦合化合物Sr2-xLaxIrO4的掺杂和拉曼谱学. 物理学报, 2015, 64(20): 207103. doi: 10.7498/aps.64.207103
    [14] 陈东海, 杨谋, 段后建, 王瑞强. 自旋轨道耦合作用下石墨烯pn结的电子输运性质. 物理学报, 2015, 64(9): 097201. doi: 10.7498/aps.64.097201
    [15] 陈光平. 简谐+四次势中自旋轨道耦合旋转玻色-爱因斯坦凝聚体的基态结构. 物理学报, 2015, 64(3): 030302. doi: 10.7498/aps.64.030302
    [16] 龚士静, 段纯刚. 金属表面Rashba自旋轨道耦合作用研究进展. 物理学报, 2015, 64(18): 187103. doi: 10.7498/aps.64.187103
    [17] 王日兴, 肖运昌, 赵婧莉. 垂直磁各向异性自旋阀结构中的铁磁共振. 物理学报, 2014, 63(21): 217601. doi: 10.7498/aps.63.217601
    [18] 张磊, 李辉武, 胡梁宾. 二维自旋轨道耦合电子气中持续自旋螺旋态的稳定性的研究. 物理学报, 2012, 61(17): 177203. doi: 10.7498/aps.61.177203
    [19] 杨杰, 董全力, 江兆潭, 张杰. 自旋轨道耦合作用对碳纳米管电子能带结构的影响. 物理学报, 2011, 60(7): 075202. doi: 10.7498/aps.60.075202
    [20] 余志强, 谢泉, 肖清泉. 狭义相对论下电子自旋轨道耦合对X射线光谱的影响. 物理学报, 2010, 59(2): 925-931. doi: 10.7498/aps.59.925
计量
  • 文章访问数:  8487
  • PDF下载量:  1206
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-11
  • 修回日期:  2016-11-28
  • 刊出日期:  2017-01-20

/

返回文章
返回