搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黑洞吸积盘系统的喷流加速机制研究

徐佳迪 姜志雄 龚小龙

引用本文:
Citation:

黑洞吸积盘系统的喷流加速机制研究

徐佳迪, 姜志雄, 龚小龙

A jet acceleration mechanism for the black hole disk system

Xu Jia-Di, Jiang Zhi-Xiong, Gong Xiao-Long
PDF
导出引用
  • 提出了一种从旋转黑洞吸积盘热冕系统中提取能量的喷流加速机制.在吸积盘热冕中,通过求解广义相对论框架下的盘冕系统的动力学方程,得出了吸积盘热冕内区的磁场强度;进一步根据黑洞磁层的电路理论推导出喷流功率的解析表达式.结果表明:模型中喷流功率随着黑洞自转参数a*和磁力矩参数的增加而明显增大,并且大部分功率应来自于在吸积盘热冕系统的内区.此外,用一组高功率喷流的活动星系核样本探讨了该喷流加速机制,分析表明所有高功率喷流源能被模型喷流功率所拟合.
    A jet acceleration mechanism of extracting energy from the disk-corona surrounding a rotating black hole is proposed. In this disk-corona scenario, the central object is a rotating Kerr black hole, and a geometrically thin and optically thick disk is sandwiched by a slab corona. The large-scaled magnetic field plays an important role in jet acceleration mechanism. So we obtain the value of the magnetic field in such a disk-corona system by solving the disk dynamic equations in the context of general relativity. The results show that the value of magnetic field decreases with the increase of disk radius, while increases with the increase of black hole spin parameter a*. Then the analytical expression of the jet power is derived based on the electronic circuit theory of the magnetosphere. It is found that the jet power increases obviously with increasing black hole spin parameter a* and magnetic stress parameter . Furthermore, the calculation results also show that the jet power is mainly from the inner region of the disk-corona system, which is consistent with the observations of the jet. Finally, a sample composed of the 23 Fermi blazars with high jet power is used to explore our jet production mechanism. The conclusion suggests that our jet acceleration mechanism can simulate all sources with high power jet. By comparing with the observational data, we find that these high jet power sources cannot be explained by the Blandford-Znajek mechanism, even if the central object is extreme Kerr black hole.
      通信作者: 龚小龙, xlgong@yangtzeu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:U1431101,11403003)和国家重点基础研究发展计划(批准号:2012CB821804)资助的课题.
      Corresponding author: Gong Xiao-Long, xlgong@yangtzeu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1431101, 11403003) and the National Basic Research Program of China (Grant No. 2012CB821804).
    [1]

    Livio M, Ogilvie G I, Pringle J E 1999 Astrophys. J. 512 100

    [2]

    Meier D L 1999 Astrophys. J. 522 753

    [3]

    Lovelace R V E 1976 Nature 262 649

    [4]

    Blandford R D, Znajek R L 1977 Mon. Not. R. Astron. Soc. 179 433

    [5]

    Blandford R D, Payne D G 1982 Mon. Not. R. Astron. Soc. 199 883

    [6]

    Proga D, Stone J M, Drew J E 1998 Mon. Not. R. Astron. Soc. 295 595

    [7]

    Meier D L 2001 Astrophys. J. 548 L9

    [8]

    Macdonald D, Thorne K S 1982 Mon. Not. R. Astron. Soc. 198 345

    [9]

    Romanova M M, Ustyugova G V, Koldoba A V 1998 Astrophys. J. 500 703

    [10]

    Tout C A, Pringle J E 1996 Mon. Not. R. Astron. Soc. 281 219

    [11]

    Narayan R, Yi I 1995 Astrophys. J. 444 231

    [12]

    Narayan R, Yi I 1995 Astrophys. J. 452 710

    [13]

    Merloni A, Fabian A C 2002 Mon. Not. R. Astron. Soc. 332 165

    [14]

    Cao X W 2003 Astrophys. J. 599 147

    [15]

    Cao X W, Rawlings S 2004 Mon. Not. R. Astron. Soc. 349 1419

    [16]

    Cao X W 2004 Astrophys. J. 613 716

    [17]

    Willott C J, Rawlings S, Blundell K M, Lacy M 1999 Mon. Not. R. Astron. Soc. 309 1017

    [18]

    Allen S W, Dunn R J H, Fabian A C, Taylor, G B, Reynolds C S 2006 Mon. Not. R. Astron. Soc. 372 21

    [19]

    McNamara B, Rohanizadegan M, Nulsen P 2011 Astrophys. J. 727 39

    [20]

    Zhang J, Sun X N, Liang E W, Lu R J, Lu Y, Zhang S N 2014 Astrophys. J. 788 104

    [21]

    Ghisellini G, Tavecchio F, Chirlanda G 2009 Mon. Not. R. Astron. Soc. 399 2041

    [22]

    Ghisellini G, Tavecchio F, Foschini L, Chirlanda G, Maraschi L, Celotti A 2010 Mon. Not. R. Astron. Soc. 402 497

    [23]

    Gong X L, Li L X, Ma R Y 2012 Mon. Not. R. Astron. Soc. 420 1415

    [24]

    Gong X L, Li L X 2012 Sci. Chin. Phys. Mech. Astron. 55 880

    [25]

    Cao X W 2009 Mon. Not. R. Astron. Soc. 394 207

    [26]

    Novikov I D, Thorne K S 1973 Astrophysics of Black Holes (New York:Gordon and Breach)

    [27]

    Page D N, Thorne K S 1974 Astrophys. J. 191 499

    [28]

    Agol E, Krolik J H 2000 Astrophys. J. 528 161

    [29]

    Zdziarski A A, Lubinski P, Smith D A 1999 Mon. Not. R. Astron. Soc. 303 L11

    [30]

    Gong X L, Wang D X, Ye Y C 2004 Chin. Phys. Lett. 21 1861

    [31]

    Gong X L, Wang D X 2005 Chin. Phys. Lett. 22 1293

    [32]

    Gong X L, Jiang Z X 2014 Chin. Phys. Lett. 31 089801

    [33]

    Thorne K S, Price R H, Macdonald D A 1986 Black Holes:the Membrane Paradigm (New Haven:Yale University Press)

    [34]

    Biretta J A, Junor W, Livio M 2002 New Astron. Rev. 46 239

    [35]

    Moderski R, Sikora M, Lasota J P 1997 On Black Hole Spins and Dichotomy of Quasars (Krakow:Jagiellonian University Press)

    [36]

    Merloni A, Fabian A C 2001 Mon. Not. R. Astron. Soc. 328 958

  • [1]

    Livio M, Ogilvie G I, Pringle J E 1999 Astrophys. J. 512 100

    [2]

    Meier D L 1999 Astrophys. J. 522 753

    [3]

    Lovelace R V E 1976 Nature 262 649

    [4]

    Blandford R D, Znajek R L 1977 Mon. Not. R. Astron. Soc. 179 433

    [5]

    Blandford R D, Payne D G 1982 Mon. Not. R. Astron. Soc. 199 883

    [6]

    Proga D, Stone J M, Drew J E 1998 Mon. Not. R. Astron. Soc. 295 595

    [7]

    Meier D L 2001 Astrophys. J. 548 L9

    [8]

    Macdonald D, Thorne K S 1982 Mon. Not. R. Astron. Soc. 198 345

    [9]

    Romanova M M, Ustyugova G V, Koldoba A V 1998 Astrophys. J. 500 703

    [10]

    Tout C A, Pringle J E 1996 Mon. Not. R. Astron. Soc. 281 219

    [11]

    Narayan R, Yi I 1995 Astrophys. J. 444 231

    [12]

    Narayan R, Yi I 1995 Astrophys. J. 452 710

    [13]

    Merloni A, Fabian A C 2002 Mon. Not. R. Astron. Soc. 332 165

    [14]

    Cao X W 2003 Astrophys. J. 599 147

    [15]

    Cao X W, Rawlings S 2004 Mon. Not. R. Astron. Soc. 349 1419

    [16]

    Cao X W 2004 Astrophys. J. 613 716

    [17]

    Willott C J, Rawlings S, Blundell K M, Lacy M 1999 Mon. Not. R. Astron. Soc. 309 1017

    [18]

    Allen S W, Dunn R J H, Fabian A C, Taylor, G B, Reynolds C S 2006 Mon. Not. R. Astron. Soc. 372 21

    [19]

    McNamara B, Rohanizadegan M, Nulsen P 2011 Astrophys. J. 727 39

    [20]

    Zhang J, Sun X N, Liang E W, Lu R J, Lu Y, Zhang S N 2014 Astrophys. J. 788 104

    [21]

    Ghisellini G, Tavecchio F, Chirlanda G 2009 Mon. Not. R. Astron. Soc. 399 2041

    [22]

    Ghisellini G, Tavecchio F, Foschini L, Chirlanda G, Maraschi L, Celotti A 2010 Mon. Not. R. Astron. Soc. 402 497

    [23]

    Gong X L, Li L X, Ma R Y 2012 Mon. Not. R. Astron. Soc. 420 1415

    [24]

    Gong X L, Li L X 2012 Sci. Chin. Phys. Mech. Astron. 55 880

    [25]

    Cao X W 2009 Mon. Not. R. Astron. Soc. 394 207

    [26]

    Novikov I D, Thorne K S 1973 Astrophysics of Black Holes (New York:Gordon and Breach)

    [27]

    Page D N, Thorne K S 1974 Astrophys. J. 191 499

    [28]

    Agol E, Krolik J H 2000 Astrophys. J. 528 161

    [29]

    Zdziarski A A, Lubinski P, Smith D A 1999 Mon. Not. R. Astron. Soc. 303 L11

    [30]

    Gong X L, Wang D X, Ye Y C 2004 Chin. Phys. Lett. 21 1861

    [31]

    Gong X L, Wang D X 2005 Chin. Phys. Lett. 22 1293

    [32]

    Gong X L, Jiang Z X 2014 Chin. Phys. Lett. 31 089801

    [33]

    Thorne K S, Price R H, Macdonald D A 1986 Black Holes:the Membrane Paradigm (New Haven:Yale University Press)

    [34]

    Biretta J A, Junor W, Livio M 2002 New Astron. Rev. 46 239

    [35]

    Moderski R, Sikora M, Lasota J P 1997 On Black Hole Spins and Dichotomy of Quasars (Krakow:Jagiellonian University Press)

    [36]

    Merloni A, Fabian A C 2001 Mon. Not. R. Astron. Soc. 328 958

  • [1] 孙伟, 吕冲, 雷柱, 王钊, 仲佳勇. 磁场对激光驱动的喷流演化影响的二维数值研究. 物理学报, 2023, 72(9): 097501. doi: 10.7498/aps.72.20230197
    [2] 张大军. 离散可积系统: 多维相容性. 物理学报, 2020, 69(1): 010202. doi: 10.7498/aps.69.20191647
    [3] 王朝辉, 李勇祥, 朱帅. 基于超表面的旋向选择吸波体. 物理学报, 2020, 69(23): 234103. doi: 10.7498/aps.69.20200511
    [4] 周仕浩, 房欣宇, 李猛猛, 俞叶峰, 陈如山. S/X双频带吸波实时可调的吸波器. 物理学报, 2020, 69(20): 204101. doi: 10.7498/aps.69.20200606
    [5] 魏益焕. Kiselev黑洞的热力学性质和物质吸积特性. 物理学报, 2019, 68(6): 060402. doi: 10.7498/aps.68.20182055
    [6] 朱杨柱, 易仕和, 孔小平, 何霖. 带喷流超声速后台阶流场精细结构及其运动特性研究. 物理学报, 2015, 64(6): 064701. doi: 10.7498/aps.64.064701
    [7] 裴晓星, 仲佳勇, 张凯, 郑无敌, 梁贵云, 王菲鹿, 李玉同, 赵刚. 实验室天体物理的验证特例:W43A磁喷流. 物理学报, 2014, 63(14): 145201. doi: 10.7498/aps.63.145201
    [8] 欧建文, 郑永刚, 张雄. 振荡吸积盘的光变研究. 物理学报, 2014, 63(23): 239801. doi: 10.7498/aps.63.239801
    [9] 朱杨柱, 易仕和, 陈植, 葛勇, 王小虎, 付佳. 带喷流超声速光学头罩流场气动光学畸变试验研究. 物理学报, 2013, 62(8): 084219. doi: 10.7498/aps.62.084219
    [10] 顾超, 屈绍波, 裴志斌, 徐卓, 刘嘉, 顾巍. 准全向平板超材料吸波体的设计. 物理学报, 2011, 60(3): 037801. doi: 10.7498/aps.60.037801
    [11] 程雪涛, 徐向华, 梁新刚. 广义流动中的积原理. 物理学报, 2011, 60(11): 118103. doi: 10.7498/aps.60.118103
    [12] 程雪涛, 梁新刚, 徐向华. (火积)的微观表述. 物理学报, 2011, 60(6): 060512. doi: 10.7498/aps.60.060512
    [13] 程雪涛, 董源, 梁新刚. 积与积减原理. 物理学报, 2011, 60(11): 114402. doi: 10.7498/aps.60.114402
    [14] 卢 俊, 陈新邑, 汪剑波. 圆环单元FSS对吸波材料特性的影响研究. 物理学报, 2008, 57(11): 7200-7203. doi: 10.7498/aps.57.7200
    [15] 何燕飞, 龚荣洲, 王 鲜, 赵 强. 蜂窝结构吸波材料等效电磁参数和吸波特性研究. 物理学报, 2008, 57(8): 5261-5266. doi: 10.7498/aps.57.5261
    [16] 王 薇, 张 杰, 赵 刚. 吸积盘的X射线辐射对周围星际物质的离化研究. 物理学报, 2006, 55(1): 287-293. doi: 10.7498/aps.55.287
    [17] 杨祥林, 陈健. 增益噪声对光孤子通信系统码率距离积的限制. 物理学报, 1993, 42(1): 51-57. doi: 10.7498/aps.42.51
    [18] 朱慧珑. 辐照材料的肿胀理论(Ⅱ)——偏吸率与肿胀公式. 物理学报, 1989, 38(9): 1454-1466. doi: 10.7498/aps.38.1454
    [19] 高飞, 张宏图. 存在异性夹杂的位错塞积. 物理学报, 1988, 37(8): 1315-1325. doi: 10.7498/aps.37.1315
    [20] 傅广生, 韩理, 李晓苇, 张连水, 董丽芳, 吕福润, 薛春银. 激光等离子体淀积硅膜. 物理学报, 1987, 36(3): 293-300. doi: 10.7498/aps.36.293
计量
  • 文章访问数:  5012
  • PDF下载量:  218
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-22
  • 修回日期:  2016-09-25
  • 刊出日期:  2017-02-05

/

返回文章
返回