搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Birkhoff系统的离散最优控制及其在航天器交会对接中的应用

孔新雷 吴惠彬

引用本文:
Citation:

Birkhoff系统的离散最优控制及其在航天器交会对接中的应用

孔新雷, 吴惠彬

Discrete optimal control for Birkhoffian systems and its application to rendezvous and docking of spacecrafts

Kong Xin-Lei, Wu Hui-Bin
PDF
导出引用
  • 由于非线性,最优控制问题通常依赖于数值求解,即通过离散目标泛函和受控运动方程转化为一有限维的非线性最优化问题. 最优控制问题中的受控运动方程在表示为受控Birkhoff方程的形式之后,可以利用受控Birkhoff方程的离散变分差分格式进行离散. 与按照传统差分格式近似受控运动方程相比,此途径可以诱导更加真实可靠的非线性最优化问题,进而也会诱导更加精确有效的离散最优控制. 应用于航天器交会对接问题,该种数值求解最优控制问题的方法在较大时间步长的情况下仍然求得了一个有效实现交会对接的离散最优控制. 模拟结果验证了该方法的有效性.
    In general, optimal control problems rely on numerically rather than analytically solving methods, due to their nonlinearities. The direct method, one of the numerically solving methods, is mainly to transform the optimal control problem into a nonlinear optimization problem with finite dimensions, via discretizing the objective functional and the forced dynamical equations directly. However, in the procedure of the direct method, the classical discretizations of the forced equations will reduce or affect the accuracy of the resulting optimization problem as well as the discrete optimal control. In view of this fact, more accurate and efficient numerical algorithms should be employed to approximate the forced dynamical equations. As verified, the discrete variational difference schemes for forced Birkhoffian systems exhibit excellent numerical behaviors in terms of high accuracy, long-time stability and precise energy prediction. Thus, the forced dynamical equations in optimal control problems, after being represented as forced Birkhoffian equations, can be discretized according to the discrete variational difference schemes for forced Birkhoffian systems. Compared with the method of employing traditional difference schemes to discretize the forced dynamical equations, this way yields faithful nonlinear optimization problems and consequently gives accurate and efficient discrete optimal control. Subsequently, in the paper we are to apply the proposed method of numerically solving optimal control problems to the rendezvous and docking problem of spacecrafts. First, we make a reasonable simplification, i.e., the rendezvous and docking process of two spacecrafts is reduced to the problem of optimally transferring the chaser spacecraft with a continuously acting force from one circular orbit around the Earth to another one. During this transfer, the goal is to minimize the control effort. Second, the dynamical equations of the chaser spacecraft are represented as the form of the forced Birkhoffian equation. Then in this case, the discrete variational difference scheme for forced Birkhoffian system can be employed to discretize the chaser spacecraft's equations of motion. With further discretizing the control effort and the boundary conditions, the resulting nonlinear optimization problem is obtained. Finally, the optimization problem is solved directly by the nonlinear programming method and then the discrete optimal control is achieved. The obtained optimal control is efficient enough to realize the rendezvous and docking process, even though it is only an approximation of the continuous one. Simulation results fully verify the efficiency of the proposed method for numerically solving optimal control problems, if the fact that the time step is chosen to be very large to limit the dimension of the optimization problem is noted.
      通信作者: 孔新雷, kongxinlei@ncut.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11602002,11672032)、北京市优秀人才培养资助(青年骨干个人)(批准号:2015000020124G025)和北方工业大学优秀青年教师培养计划(批准号:XN072-041) 资助的课题.
      Corresponding author: Kong Xin-Lei, kongxinlei@ncut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11602002, 11672032), the Outstanding Talents Program of Beijing (Grant No. 2015000020124G025), and the Excellent Young Teachers Program of North China University of Technology (Grant No. XN072-041).
    [1]

    Mei F X, Shi R C, Zhang Y F, Wu H B 1996 Dynamics of Birkhoff System (Beijing: Beijing Institute of Technology Press) (in Chinese) [梅凤翔, 史荣昌, 张永发, 吴惠彬 1996 Birkhoff 系统动力学 (北京: 北京理工大学出版社)]

    [2]

    Cui J C, Song D, Guo Y X 2012 Acta Phys. Sin. 61 244501 (in Chinese) [崔金超, 宋端, 郭永新 2012 物理学报 61 244501]

    [3]

    Cui J C, Zhao Z, Guo Y X 2013 Acta Phys. Sin. 62 090205 (in Chinese) [崔金超, 赵喆, 郭永新 2013 物理学报 62 090205]

    [4]

    Zhang Y 2010 Commun. Theor. Phys. 53 166

    [5]

    Zhai X H, Zhang Y 2014 Nonlinear Dyn. 77 73

    [6]

    Zhang Y 2010 Chin. Phys. B 19 080301

    [7]

    Kong X L, Wu H B, Mei F X 2012 J. Geom. Phys. 62 1157

    [8]

    Liu S X, Liu C, Guo Y X 2011 Acta Phys. Sin. 60 064501 (in Chinese) [刘世兴, 刘畅, 郭永新 2011 物理学报 60 064501]

    [9]

    Liu S X, Hua W, Guo Y X 2014 Chin. Phys. B 23 064501

    [10]

    Mei F X, Wu H B 2015 Chin. Phys. B 24 104502

    [11]

    Mei F X, Wu H B 2015 Chin. Phys. B 24 054501

    [12]

    Sun Y J, Shang Z J 2005 Phys. Lett. A 336 358

    [13]

    Su H L, Sun Y J, Qin M Z, Scherer R 2007 Int. J. Pure Appl. Math. 40 341

    [14]

    Kong X L, Wu H B, Mei F X 2016 Chin. Phys. B 25 010203

    [15]

    Liu C 2012 Ph. D. Dissertation (Beijing: Beijing Institue of Technology) (in Chinese) [刘畅 2012 博士学位论文 (北京: 北京理工大学)]

    [16]

    Kong X L, Wu H B, Mei F X 2013 Appl. Math. Comp. 225 326

    [17]

    Kong X L, Wu H B, Mei F X 2013 Nonlinear Dyn. 74 711

    [18]

    Gill P E, Jay L O, Leonard M W, Petzold L R, Sharma V 2000 J. Comput. Appl. Math. 120 197

    [19]

    Zhang Y 2008 Chin. Phys. B 17 4365

    [20]

    Marsden J E, Ratiu T S 1999 Introduction to Mechanics and Symmetry (New York: Springer)

  • [1]

    Mei F X, Shi R C, Zhang Y F, Wu H B 1996 Dynamics of Birkhoff System (Beijing: Beijing Institute of Technology Press) (in Chinese) [梅凤翔, 史荣昌, 张永发, 吴惠彬 1996 Birkhoff 系统动力学 (北京: 北京理工大学出版社)]

    [2]

    Cui J C, Song D, Guo Y X 2012 Acta Phys. Sin. 61 244501 (in Chinese) [崔金超, 宋端, 郭永新 2012 物理学报 61 244501]

    [3]

    Cui J C, Zhao Z, Guo Y X 2013 Acta Phys. Sin. 62 090205 (in Chinese) [崔金超, 赵喆, 郭永新 2013 物理学报 62 090205]

    [4]

    Zhang Y 2010 Commun. Theor. Phys. 53 166

    [5]

    Zhai X H, Zhang Y 2014 Nonlinear Dyn. 77 73

    [6]

    Zhang Y 2010 Chin. Phys. B 19 080301

    [7]

    Kong X L, Wu H B, Mei F X 2012 J. Geom. Phys. 62 1157

    [8]

    Liu S X, Liu C, Guo Y X 2011 Acta Phys. Sin. 60 064501 (in Chinese) [刘世兴, 刘畅, 郭永新 2011 物理学报 60 064501]

    [9]

    Liu S X, Hua W, Guo Y X 2014 Chin. Phys. B 23 064501

    [10]

    Mei F X, Wu H B 2015 Chin. Phys. B 24 104502

    [11]

    Mei F X, Wu H B 2015 Chin. Phys. B 24 054501

    [12]

    Sun Y J, Shang Z J 2005 Phys. Lett. A 336 358

    [13]

    Su H L, Sun Y J, Qin M Z, Scherer R 2007 Int. J. Pure Appl. Math. 40 341

    [14]

    Kong X L, Wu H B, Mei F X 2016 Chin. Phys. B 25 010203

    [15]

    Liu C 2012 Ph. D. Dissertation (Beijing: Beijing Institue of Technology) (in Chinese) [刘畅 2012 博士学位论文 (北京: 北京理工大学)]

    [16]

    Kong X L, Wu H B, Mei F X 2013 Appl. Math. Comp. 225 326

    [17]

    Kong X L, Wu H B, Mei F X 2013 Nonlinear Dyn. 74 711

    [18]

    Gill P E, Jay L O, Leonard M W, Petzold L R, Sharma V 2000 J. Comput. Appl. Math. 120 197

    [19]

    Zhang Y 2008 Chin. Phys. B 17 4365

    [20]

    Marsden J E, Ratiu T S 1999 Introduction to Mechanics and Symmetry (New York: Springer)

  • [1] 张毅. 时间尺度上非迁移Birkhoff系统的Mei对称性定理. 物理学报, 2021, 70(24): 244501. doi: 10.7498/aps.70.20210372
    [2] 曹小群. 基于高斯伪谱方法的混沌系统最优控制. 物理学报, 2013, 62(23): 230505. doi: 10.7498/aps.62.230505
    [3] 葛伟宽, 张毅, 楼智美. 一类广义Birkhoff系统的无限小正则变换与积分. 物理学报, 2012, 61(14): 140204. doi: 10.7498/aps.61.140204
    [4] 丁光涛. 规范变换对Birkhoff系统对称性的影响. 物理学报, 2009, 58(11): 7431-7435. doi: 10.7498/aps.58.7431
    [5] 张 毅. 事件空间中Birkhoff系统的参数方程及其第一积分. 物理学报, 2008, 57(5): 2649-2653. doi: 10.7498/aps.57.2649
    [6] 张 毅. Birkhoff系统约化的Routh方法. 物理学报, 2008, 57(9): 5374-5377. doi: 10.7498/aps.57.5374
    [7] 张 毅. 事件空间中Birkhoff系统的Noether理论. 物理学报, 2008, 57(5): 2643-2648. doi: 10.7498/aps.57.2643
    [8] 葛伟宽, 梅凤翔. Birkhoff系统的时间积分定理. 物理学报, 2007, 56(5): 2479-2481. doi: 10.7498/aps.56.2479
    [9] 张鹏玉, 方建会. 变质量Birkhoff系统的Lie对称性和非Noether守恒量. 物理学报, 2006, 55(8): 3813-3816. doi: 10.7498/aps.55.3813
    [10] 张 毅. Birkhoff系统的一类新型绝热不变量. 物理学报, 2006, 55(8): 3833-3837. doi: 10.7498/aps.55.3833
    [11] 郑世旺, 贾利群. Birkhoff系统的局部能量积分. 物理学报, 2006, 55(11): 5590-5593. doi: 10.7498/aps.55.5590
    [12] 张 毅, 梅凤翔. 约束对Birkhoff系统Noether对称性和守恒量的影响. 物理学报, 2004, 53(8): 2419-2423. doi: 10.7498/aps.53.2419
    [13] 张 毅, 范存新, 葛伟宽. Birkhoff系统的一类新型守恒量. 物理学报, 2004, 53(11): 3644-3647. doi: 10.7498/aps.53.3644
    [14] 张 毅. Birkhoff系统的Hojman定理的几何基础. 物理学报, 2004, 53(12): 4026-4028. doi: 10.7498/aps.53.4026
    [15] 刘 丁, 钱富才, 任海鹏, 孔志强. 离散混沌系统的最小能量控制. 物理学报, 2004, 53(7): 2074-2079. doi: 10.7498/aps.53.2074
    [16] 张毅. 单面约束Birkhoff系统对称性的摄动与绝热不变量. 物理学报, 2002, 51(8): 1666-1670. doi: 10.7498/aps.51.1666
    [17] 罗绍凯, 卢一兵, 周强, 王应德, 欧阳实. 转动相对论Birkhoff约束系统积分不变量的构造. 物理学报, 2002, 51(9): 1913-1917. doi: 10.7498/aps.51.1913
    [18] 张毅. Birkhoff系统的一类Lie对称性守恒量. 物理学报, 2002, 51(3): 461-464. doi: 10.7498/aps.51.461
    [19] 傅景礼, 陈立群, 薛纭, 罗绍凯. 相对论Birkhoff系统的平衡稳定性. 物理学报, 2002, 51(12): 2683-2689. doi: 10.7498/aps.51.2683
    [20] 傅景礼, 陈立群, 罗绍凯, 陈向炜, 王新民. 相对论Birkhoff系统动力学研究. 物理学报, 2001, 50(12): 2289-2295. doi: 10.7498/aps.50.2289
计量
  • 文章访问数:  4151
  • PDF下载量:  151
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-26
  • 修回日期:  2016-12-25
  • 刊出日期:  2017-04-05

/

返回文章
返回