搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超强激光与固体气体复合靶作用产生高能氦离子

矫金龙 贺书凯 邓志刚 卢峰 张镱 杨雷 张发强 董克攻 王少义 张博 滕建 洪伟 谷渝秋

引用本文:
Citation:

超强激光与固体气体复合靶作用产生高能氦离子

矫金龙, 贺书凯, 邓志刚, 卢峰, 张镱, 杨雷, 张发强, 董克攻, 王少义, 张博, 滕建, 洪伟, 谷渝秋

Helium ions acceleration by ultraintense laser interactions with foil-gas target

Jiao Jin-Long, He Shu-Kai, Deng Zhi-Gang, Lu Feng, Zhang Yi, Yang Lei, Zhang Fa-Qiang, Dong Ke-Gong, Wang Shao-Yi, Zhang Bo, Teng Jian, Hong Wei, Gu Yu-Qiu
PDF
导出引用
  • 激光氦离子源产生的MeV能量的氦离子因有望用于聚变反应堆材料辐照损伤的模拟研究而得到关注. 目前激光驱动氦离子源的主要方案是采用相对论激光与氦气射流作用加速高能氦离子,但这种方案在实验上难以产生具有前向性和准单能性、数MeV能量、高产额的氦离子束,而这些氦离子束特性是材料辐照损伤研究中十分关注的. 不同于上述激光氦离子产生方法,我们提出了一种利用超强激光与固体-气体复合靶作用产生氦离子的新方法. 利用这种方法,在实验上,采用功率密度51018 W/cm2的皮秒脉宽的激光脉冲与铜-氦气复合靶作用,产生了前向发射的2.7 MeV的准单能氦离子束,能量超过0.5 MeV的氦离子产额约为1013/sr. 二维粒子模拟显示,氦离子在靶背鞘场加速和类无碰撞冲击波加速两种加速机理共同作用下得到加速. 同时粒子模拟还显示氦离子截止能量与超热电子温度成正比.
    Laser-driven helium ion source with multi-MeV energy has an important application in the field of fusion reactor material irradiation damage. At present, the generating of high energy helium ions by relativistic ultraintense laser interacting with helium gas jet is the main scheme of laser-driven helium ion source. However, so far, this scheme has been hard to generate the helium ion beam with the characteristics, i.e., it is forward and quasi-monoenergetic and has multi-MeV in energy and high yield. These characteristics of helium ion beam are important for studying the material irradiation damage. In this paper, we propose a new scheme in which an ultraintense laser interacting with foil-gas complex target is used to generate helium ions. With this method, we perform an experiment on XingGuang III laser facility which has three laser beams with different laser durations (nanosecond, picosecond and femtosecond). In our experiment, we use a picosecond laser beam. The wavelength of this laser beam is 1054 nm and its duration is 0.8 ps. We use an off-axis parabola mirror to focus the 100 J energy of this laser beam onto a focal spot of 25 m far away. The laser intensity reaches 51018 W/cm2. The foil-gas target is composed of a copper foil with 7 m in thickness and a helium gas nozzle which is behind the copper foil. The helium gas nozzle can generate a helium gas jet with a full ionization electron density of 51019/cm3. We use the Thomson Parabola Spectrometer to record the helium ion signals and the Electron Magnetic Spectrometer to diagnose the hot electron temperature. In the experiment, the laser pulse interacts with the front surface of the copper foil and generates lots of hot electrons. These hot electrons result in the expansion of the rear surface of the copper foil. The expanding plasma accelerates the helium ions behind the copper foil. The experimental results show that the obtained helium ions are forward and quasi-monoenergetic (the peak energy is 2.7 MeV), and the total energy of the helium ions whose energies are all higher than 0.5 MeV is about 1.1 J/sr, and correspondingly the yield of helium ions is about 1013/sr. The helium ion spectrum and hot electron temperature given by particle in cell (PIC) simulation with using the experimental parameters are consistent with the experimental results. In addition, the PIC simulations also show that helium ions are accelerated by target normal sheath acceleration and collisionless shock acceleration-like mechanisms, and the maximum helium ion energy is proportional to the hot electron temperature.
      通信作者: 谷渝秋, yqgu@caep.cn
    • 基金项目: 中国工程物理研究院发展基金(批准号:2013A0103003)和科学挑战计划资助的课题.
      Corresponding author: Gu Yu-Qiu, yqgu@caep.cn
    • Funds: Project supported by the Development Foundation of China Academy of Engineering Physics (Grant No. 2013A0103003) and the Science Challenge Program of China Academy of Engineering Physics .
    [1]

    Daido H, Nishiuchi M, Pirozhkov A S 2012 Rep. Prog. Phys. 75 056401

    [2]

    Macchi A, Borghesi M, Passoni M 2013 Rev. Mod. Phys. 85 751

    [3]

    Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, MacKinnon A, Snavely R A 2001 Phys. Plasmas 8 542

    [4]

    Esirkepov T, Borghesi M, Bulanov S V, Mourou G, Tajima T 2004 Phys. Rev. Lett. 92 175003

    [5]

    Silva L O, Marti M, Davies J R, Fonseca R A, Ren C, Tsung F S, Mori W B 2004 Phys. Rev. Lett. 92 015002

    [6]

    Hasegawa A, Saito M, Nogami S, Abe K, Jones R H, Takahashi H 1999 J. Nucl. Mater. 264 355

    [7]

    Zheng H, Zhang C H, Chen B, Yang Y T, Lai X C 2014 Acta Phys. Sin. 63 106102 (in Chinese) [郑晖, 张崇宏, 陈波, 杨义涛, 赖新春 2014 物理学报 63 106102]

    [8]

    Sarkisov G S, Bychenkov V Y, Novikov V N, Tikhonchuk V T 1999 Phys. Rev. E 59 7042

    [9]

    Krushelnick K, Clark E L, Najmudin Z, Salvati M, Santala M I K, Tatarakis M, Dangor A E 1999 Phys. Rev. Lett. 83 737

    [10]

    Wei M S, Mangles S P D, Najmudin Z, Walton B, Gopal A, Tatarakis M, Dangor A E, Clark E L, Evans R G, Fritzler S, Clarke R J, Hernandez-Gomez C, Neely D, Mori W, Tzoufras M, Krushelnick K 2004 Phys. Rev. Lett. 93 155003

    [11]

    Willingale L, Mangles S P D, Nilson P M, Clarke R J, Dangor A E, Kaluza M C, Karsch S, Lancaster K L, Mori W B, Najmudin Z, Schreiber J, Thomas A G R, Wei M S, Krushelnick K 2006 Phys. Rev. Lett. 96 245002

    [12]

    Fukuda Y, Faenov A Y, Tampo M, Pikuz T A, Nakamura T, Kando M, Hayashi Y, Yogo A, Sakaki H, Kameshima T, Pirozhkov A S, Ogura K, Mori M, Esirkepov T Z, Koga J, Boldarev A S, Gasilov V A, Magunov A I, Yamauchi T, Kodama R, Bolton P R, Kato Y, Tajima T, Daido H, Bulanov S V 2009 Phys. Rev. Lett. 103 165002

    [13]

    Lifschitz A, Sylla F, Kahaly S, Flacco A, Veltcheva M, Sanchez-Arriaga G, Lefebvre E, Malka V 2014 New J. Phys. 16 033031

    [14]

    Wang P X, Song J S 2002 Helium and Tritium Permeation in Materials (Beijing: National Defence Industry Press) p39 [王佩璇, 宋家树 2002 材料中的氦及氚渗透 (北京: 国防工业出版社) 第39页]

    [15]

    Wilks S C, Kruer W L, Tabak M, Langdon A B 1992 Phys. Rev. Lett. 69 1383

    [16]

    Wilks S C 1993 Phys. Fluids B 5 2603

    [17]

    Kruer W L 1988 The Physics of Laser Plasma Interactions (New York: Addison-Wesley) p133

    [18]

    Dieckmann M E, Sarri G, Romagnani L, Kourakis I, Borghesi M 2010 Plasma Phys. Control. Fusion 52 025001

    [19]

    Sarri G, Dieckmann M E, Kourakis I, Borghesi M 2010 Phys. Plasmas 17 082305

    [20]

    Sarri G, Dieckmann M E, Kourakis I, Borghesi M 2011 Phys. Rev. Lett. 107 025003

    [21]

    Sarri G, Murphy G C, Dieckmann M E, Bret A, Quinn K, Kourakis I, Borghesi M, Drury L O C, Ynnerman A 2011 New J. Phys. 13 073023

    [22]

    Beg F N, Bell A R, Dangor A E, Danson C N, Fews A P, Glinsky M E, Hammel B A, Lee P, Norreys P A, Tatarakis M 1997 Phys. Plasmas 4 447

  • [1]

    Daido H, Nishiuchi M, Pirozhkov A S 2012 Rep. Prog. Phys. 75 056401

    [2]

    Macchi A, Borghesi M, Passoni M 2013 Rev. Mod. Phys. 85 751

    [3]

    Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, MacKinnon A, Snavely R A 2001 Phys. Plasmas 8 542

    [4]

    Esirkepov T, Borghesi M, Bulanov S V, Mourou G, Tajima T 2004 Phys. Rev. Lett. 92 175003

    [5]

    Silva L O, Marti M, Davies J R, Fonseca R A, Ren C, Tsung F S, Mori W B 2004 Phys. Rev. Lett. 92 015002

    [6]

    Hasegawa A, Saito M, Nogami S, Abe K, Jones R H, Takahashi H 1999 J. Nucl. Mater. 264 355

    [7]

    Zheng H, Zhang C H, Chen B, Yang Y T, Lai X C 2014 Acta Phys. Sin. 63 106102 (in Chinese) [郑晖, 张崇宏, 陈波, 杨义涛, 赖新春 2014 物理学报 63 106102]

    [8]

    Sarkisov G S, Bychenkov V Y, Novikov V N, Tikhonchuk V T 1999 Phys. Rev. E 59 7042

    [9]

    Krushelnick K, Clark E L, Najmudin Z, Salvati M, Santala M I K, Tatarakis M, Dangor A E 1999 Phys. Rev. Lett. 83 737

    [10]

    Wei M S, Mangles S P D, Najmudin Z, Walton B, Gopal A, Tatarakis M, Dangor A E, Clark E L, Evans R G, Fritzler S, Clarke R J, Hernandez-Gomez C, Neely D, Mori W, Tzoufras M, Krushelnick K 2004 Phys. Rev. Lett. 93 155003

    [11]

    Willingale L, Mangles S P D, Nilson P M, Clarke R J, Dangor A E, Kaluza M C, Karsch S, Lancaster K L, Mori W B, Najmudin Z, Schreiber J, Thomas A G R, Wei M S, Krushelnick K 2006 Phys. Rev. Lett. 96 245002

    [12]

    Fukuda Y, Faenov A Y, Tampo M, Pikuz T A, Nakamura T, Kando M, Hayashi Y, Yogo A, Sakaki H, Kameshima T, Pirozhkov A S, Ogura K, Mori M, Esirkepov T Z, Koga J, Boldarev A S, Gasilov V A, Magunov A I, Yamauchi T, Kodama R, Bolton P R, Kato Y, Tajima T, Daido H, Bulanov S V 2009 Phys. Rev. Lett. 103 165002

    [13]

    Lifschitz A, Sylla F, Kahaly S, Flacco A, Veltcheva M, Sanchez-Arriaga G, Lefebvre E, Malka V 2014 New J. Phys. 16 033031

    [14]

    Wang P X, Song J S 2002 Helium and Tritium Permeation in Materials (Beijing: National Defence Industry Press) p39 [王佩璇, 宋家树 2002 材料中的氦及氚渗透 (北京: 国防工业出版社) 第39页]

    [15]

    Wilks S C, Kruer W L, Tabak M, Langdon A B 1992 Phys. Rev. Lett. 69 1383

    [16]

    Wilks S C 1993 Phys. Fluids B 5 2603

    [17]

    Kruer W L 1988 The Physics of Laser Plasma Interactions (New York: Addison-Wesley) p133

    [18]

    Dieckmann M E, Sarri G, Romagnani L, Kourakis I, Borghesi M 2010 Plasma Phys. Control. Fusion 52 025001

    [19]

    Sarri G, Dieckmann M E, Kourakis I, Borghesi M 2010 Phys. Plasmas 17 082305

    [20]

    Sarri G, Dieckmann M E, Kourakis I, Borghesi M 2011 Phys. Rev. Lett. 107 025003

    [21]

    Sarri G, Murphy G C, Dieckmann M E, Bret A, Quinn K, Kourakis I, Borghesi M, Drury L O C, Ynnerman A 2011 New J. Phys. 13 073023

    [22]

    Beg F N, Bell A R, Dangor A E, Danson C N, Fews A P, Glinsky M E, Hammel B A, Lee P, Norreys P A, Tatarakis M 1997 Phys. Plasmas 4 447

计量
  • 文章访问数:  4595
  • PDF下载量:  224
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-30
  • 修回日期:  2017-01-22
  • 刊出日期:  2017-04-05

/

返回文章
返回