搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于叠层衍射成像的二元光学元件检测研究

王磊 窦健泰 马骏 袁操今 高志山 魏聪 张天宇

引用本文:
Citation:

基于叠层衍射成像的二元光学元件检测研究

王磊, 窦健泰, 马骏, 袁操今, 高志山, 魏聪, 张天宇

Detection of the binary optical element based on ptychography

Wang Lei, Dou Jian-Tai, Ma Jun, Yuan Cao-Jin, Gao Zhi-Shan, Wei Cong, Zhang Tian-Yu
PDF
导出引用
  • 本文提出了一种基于叠层衍射成像(ptychography)的二元光学元件的检测方法,该方法可实现对二元光学元件表面微观轮廓的检测以及特征尺寸的标定.相比于传统的二元光学元件检测方法,其使用无透镜成像技术,简化了系统结构并可适用于特殊环境下的检测.该方法可直接通过采集多幅衍射图,利用叠层衍射成像迭代算法可精确地复原大尺寸待测元件的表面微观轮廓,提高大尺寸器件的检测效率.本文模拟仿真了台阶高度与噪声大小对纯相位台阶板复原结果的影响,并在光学实验中选取计算全息板为样品,复原样品的表面微观轮廓信息以及得到台阶高度.以白光干涉仪检测结果为标准,该方法在精度要求不太高的前提下,可获得令人满意的成像质量.
    Due to the extremely high diffractive efficiency and flexible design freedom, binary optical element can realize specific function in the optical system in comparison with the traditional refractive optical element. Ptychography, which is a typical lensless optical imaging technology with simple structure, has the advantages of the extensible imaging range and high resolution. The topography of binary optical element can produce the phase difference between the illumination and transmission fields. The features of binary optical element are based on the complex amplitude modulation. So we can obtain the complex transmission function by using ptychography to realize the phase retrieval. In this paper, we propose a detection method for binary diffractive optical element based on ptychography. An improved ptychography optical system is designed by using the combination of variable aperture and lens to control the illumination field. Because the illumination field is a diverging spherical wave, the diffractive patterns can avoid the high contrast and the reconstruction result will contain more details of the sample. The proposed method can not only inspect a large region of the binary optical element, but also calibrate its feature size, such as step height. Compared with the traditional binary optical element detection methods, the proposed method can simplify the system structure, and it can be applied to special environment by using lensless imaging technology. The increasing of the diffraction pattern numbers can acquire the topography of the large size sample and improve the detection efficiency. Taking a phase step plate for sample, the simulations are conducted to analyze the influences of step height and noise on the recovery result. The results show that the detection range of step height is less than 1.5. We can realize a preferable sample reconstruction when the noise of diffraction pattern is less than 5%. A computer-generated holography (CGH) is reconstructed by using the extended ptychographic iterative engine. The diameter of illumination filed is selected to be about 2 mm in order to obtain a large detection region of the sample. The surface micro topography of CGH can be shown through the m 1.98 mm1.98 mm recovery result. More details can be obtained by changing the diameter of illumination filed about 1.6 mm. The recovery result is quite accurate and the error of step height is less than 30 nm compared with the result of white light interference detection. The simulation and experimental results verify the feasibility of this method. When the requirement for accuracy is not extremely high, the proposed method can obtain a satisfactory image quality. In addition, we hope to improve the proposed method, which can be more accurate to detect different types of optical elements in the future research.
      通信作者: 马骏, majun@njust.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61377015,61505080,61575095)、中国科协青年人才托举工程(批准号:2015QNRC001)和中央高校基本科研业务费专项资金(批准号:30920130111007)资助的课题.
      Corresponding author: Ma Jun, majun@njust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61377015, 61505080, 61575095), the Young Elite Scientist Sponsorship Program by Chinese Association for Science and Technology (Grant No. 2015QNRC001), and the Fundamental Research Funds for the Central Universities, China (Grant No. 30920130111007).
    [1]

    Stone T, George N 1988 Appl. Opt. 27 2960

    [2]

    Guo T, Li F, Chen J P, Fu X, Hu X T 2016 Opt. Lasers Eng. 82 41

    [3]

    Coppola G, Di Caprio G, Gioffr M, Puglisi R, Balduzzi D, Galli A, Miccio L, Paturzo M, Grilli S, Finizio A, Ferraro P 2010 Opt. Lett. 35 3390

    [4]

    Chen X G, Liu S Y, Zhang C W, Jiang H, Ma Z C, Sun T Y, Xu Z M 2014 Opt. Express 22 15165

    [5]

    Rodenburg J M, Hurst A C, Cullis A G 2007 Ultramicroscopy 107 227

    [6]

    Sun J S, Zhang Y Z, Chen Q, Zuo C 2016 Acta Opt. Sin. 36 1011005 (in Chinese) [孙佳嵩, 张玉珍, 陈钱, 左超 2016 光学学报 36 1011005]

    [7]

    Thibault P, Dierolf M, Bunk O, Menzel A, Pfeiffer F 2009 Ultramicroscopy 109 338

    [8]

    Hoppe W 1969 Acta Cryst. A 25 495

    [9]

    Fienup J R 1982 Appl. Opt. 21 2758

    [10]

    Rodenburg J M, Faulkner H M L 2004 Appl. Phys. Lett. 85 4795

    [11]

    Maiden A M, Rodenburg J M 2009 Ultramicroscopy 109 1256

    [12]

    Pan X C, Veetil S P, Liu C, Lin Q, Zhu J Q 2013 Chin. Opt. Lett. 11 021103

    [13]

    Maiden A M, Humphry M J, Zhang F C, Rodenburg J M 2011 J. Opt. Soc. Am. A 28 604

    [14]

    Rodenburg J M, Hurst A C, Cullis A G, Dobson B R, Pfeiffer F, Bunk O, David C, Jefimovs K, Johnson I 2007 Phys. Rev. Lett. 98 034801

    [15]

    Claus D, Maiden A M, Zhang F C, Sweeney F G, Humphry M J, Schluesener H, Rodenburg J M 2012 Opt. Express 20 9911

    [16]

    Liu X L, Pan Z, Wang Y L, Shi Y S 2015 Acta Phys. Sin. 64 234201 (in Chinese) [刘祥磊, 潘泽, 王雅丽, 史祎诗 2015 物理学报 64 234201]

    [17]

    Wang Y L, Li T, Gao Q K, Zhang S G, Shi Y S 2013 Opt. Eng. 52 091720

    [18]

    Claus D, Robinson D J, Chetwynd D G, Shuo Y, Pike W T, Jos J D J, Rodenburg J M 2013 J. Opt. 15 035702

    [19]

    Tao H, Veetil S P, Cheng J, Pan X C, Wang H Y, Liu C, Zhu J Q 2015 Appl. Opt. 54 1776

    [20]

    Wang H Y, Liu C, Veetil S P, Pan X C, Zhu J Q 2014 Opt. Express 22 2159

    [21]

    Wang Y L, Shi Y S, Li T, Gao Q K, Xiao J, Zhang S G 2013 Acta Phys. Sin. 62 064206 (in Chinese) [王雅丽, 史祎诗, 李拓, 高乾坤, 肖俊, 张三国 2013 物理学报 62 064206]

    [22]

    He F, Rodenburg J M, Maiden A M, Midgley P A 2011 Ultramicroscopy 111 1117

    [23]

    Humphry M J, Kraus B, Hurst A C, Maiden A M, Rodenburg J M 2012 Nat. Commun. 3 730

    [24]

    Rodenburg J M, Hurst A C, Maiden A M 2010 J. Phys.: Conf. Ser. 241 012003

  • [1]

    Stone T, George N 1988 Appl. Opt. 27 2960

    [2]

    Guo T, Li F, Chen J P, Fu X, Hu X T 2016 Opt. Lasers Eng. 82 41

    [3]

    Coppola G, Di Caprio G, Gioffr M, Puglisi R, Balduzzi D, Galli A, Miccio L, Paturzo M, Grilli S, Finizio A, Ferraro P 2010 Opt. Lett. 35 3390

    [4]

    Chen X G, Liu S Y, Zhang C W, Jiang H, Ma Z C, Sun T Y, Xu Z M 2014 Opt. Express 22 15165

    [5]

    Rodenburg J M, Hurst A C, Cullis A G 2007 Ultramicroscopy 107 227

    [6]

    Sun J S, Zhang Y Z, Chen Q, Zuo C 2016 Acta Opt. Sin. 36 1011005 (in Chinese) [孙佳嵩, 张玉珍, 陈钱, 左超 2016 光学学报 36 1011005]

    [7]

    Thibault P, Dierolf M, Bunk O, Menzel A, Pfeiffer F 2009 Ultramicroscopy 109 338

    [8]

    Hoppe W 1969 Acta Cryst. A 25 495

    [9]

    Fienup J R 1982 Appl. Opt. 21 2758

    [10]

    Rodenburg J M, Faulkner H M L 2004 Appl. Phys. Lett. 85 4795

    [11]

    Maiden A M, Rodenburg J M 2009 Ultramicroscopy 109 1256

    [12]

    Pan X C, Veetil S P, Liu C, Lin Q, Zhu J Q 2013 Chin. Opt. Lett. 11 021103

    [13]

    Maiden A M, Humphry M J, Zhang F C, Rodenburg J M 2011 J. Opt. Soc. Am. A 28 604

    [14]

    Rodenburg J M, Hurst A C, Cullis A G, Dobson B R, Pfeiffer F, Bunk O, David C, Jefimovs K, Johnson I 2007 Phys. Rev. Lett. 98 034801

    [15]

    Claus D, Maiden A M, Zhang F C, Sweeney F G, Humphry M J, Schluesener H, Rodenburg J M 2012 Opt. Express 20 9911

    [16]

    Liu X L, Pan Z, Wang Y L, Shi Y S 2015 Acta Phys. Sin. 64 234201 (in Chinese) [刘祥磊, 潘泽, 王雅丽, 史祎诗 2015 物理学报 64 234201]

    [17]

    Wang Y L, Li T, Gao Q K, Zhang S G, Shi Y S 2013 Opt. Eng. 52 091720

    [18]

    Claus D, Robinson D J, Chetwynd D G, Shuo Y, Pike W T, Jos J D J, Rodenburg J M 2013 J. Opt. 15 035702

    [19]

    Tao H, Veetil S P, Cheng J, Pan X C, Wang H Y, Liu C, Zhu J Q 2015 Appl. Opt. 54 1776

    [20]

    Wang H Y, Liu C, Veetil S P, Pan X C, Zhu J Q 2014 Opt. Express 22 2159

    [21]

    Wang Y L, Shi Y S, Li T, Gao Q K, Xiao J, Zhang S G 2013 Acta Phys. Sin. 62 064206 (in Chinese) [王雅丽, 史祎诗, 李拓, 高乾坤, 肖俊, 张三国 2013 物理学报 62 064206]

    [22]

    He F, Rodenburg J M, Maiden A M, Midgley P A 2011 Ultramicroscopy 111 1117

    [23]

    Humphry M J, Kraus B, Hurst A C, Maiden A M, Rodenburg J M 2012 Nat. Commun. 3 730

    [24]

    Rodenburg J M, Hurst A C, Maiden A M 2010 J. Phys.: Conf. Ser. 241 012003

  • [1] 张银胜, 童俊毅, 陈戈, 单梦姣, 王硕洋, 单慧琳. 基于多尺度特征增强的合成孔径光学图像复原. 物理学报, 2024, 73(6): 064203. doi: 10.7498/aps.73.20231761
    [2] 徐琨淇, 胡成, 沈沛约, 马赛群, 周先亮, 梁齐, 史志文. 叠层/转角二维原子晶体结构与极化激元的近场光学表征. 物理学报, 2023, 72(2): 027102. doi: 10.7498/aps.72.20222145
    [3] 齐乃杰, 何小亮, 吴丽青, 刘诚, 朱健强. 探测器光电特性对叠层相干衍射成像的影响. 物理学报, 2023, 72(15): 154202. doi: 10.7498/aps.72.20230603
    [4] 潘新宇, 毕筱雪, 董政, 耿直, 徐晗, 张一, 董宇辉, 张承龙. 叠层相干衍射成像算法发展综述. 物理学报, 2023, 72(5): 054202. doi: 10.7498/aps.72.20221889
    [5] 王迪, 韩涛, 钱黄河, 刘智毅, 丁志华. 基于特征谱线与约束拟合相位的绝对波数标定方法. 物理学报, 2022, 71(21): 214203. doi: 10.7498/aps.71.20220314
    [6] 王迪, 韩涛, 钱黄河, 刘智毅, 丁志华. 基于特征谱线与约束拟合相位的绝对波数标定方法. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120220314
    [7] 王大勇, 李兵, 戎路, 赵洁, 王云新, 翟长超. 连续太赫兹波双物距叠层定量相衬成像. 物理学报, 2020, 69(2): 028701. doi: 10.7498/aps.69.20191310
    [8] 李百宏, 王豆豆, 庞华锋, 张涛, 解忧, 高峰, 董瑞芳, 李永放, 张首刚. 用二元相位调制实现啁啾纠缠光子对关联时间的压缩. 物理学报, 2017, 66(4): 044206. doi: 10.7498/aps.66.044206
    [9] 潘安, 张晓菲, 王彬, 赵青, 史祎诗. 厚样品三维叠层衍射成像的实验研究. 物理学报, 2016, 65(1): 014204. doi: 10.7498/aps.65.014204
    [10] 潘安, 王东, 史祎诗, 姚保利, 马臻, 韩洋. 多波长同时照明的菲涅耳域非相干叠层衍射成像. 物理学报, 2016, 65(12): 124201. doi: 10.7498/aps.65.124201
    [11] 王东, 马迎军, 刘泉, 史祎诗. 可见光域多波长叠层衍射成像的实验研究. 物理学报, 2015, 64(8): 084203. doi: 10.7498/aps.64.084203
    [12] 孟广慧, 林鑫. 二元层片共晶凝固过程的特征尺度选择. 物理学报, 2014, 63(6): 068104. doi: 10.7498/aps.63.068104
    [13] 王治昊, 王雅丽, 李拓, 史祎诗. 基于旋转相位编码与照明光束匹配的叠层衍射成像算法研究. 物理学报, 2014, 63(16): 164204. doi: 10.7498/aps.63.164204
    [14] 李斐. 相位差图像复原技术研究. 物理学报, 2012, 61(23): 230203. doi: 10.7498/aps.61.230203
    [15] 刘敏敏, 张国平, 邹 明. 二元矩形金属光栅衍射增强电磁理论. 物理学报, 2006, 55(9): 4608-4612. doi: 10.7498/aps.55.4608
    [16] 步 扬, 王向朝. 基于频域相位共轭技术的交叉相位调制所致失真的复原. 物理学报, 2005, 54(10): 4747-4753. doi: 10.7498/aps.54.4747
    [17] 李玉同, 张 杰, 鲁 欣, 金 展, D. A. Pepler, C. N. Danson. 使用二元相位菲涅尔波带片产生轴向线聚焦. 物理学报, 2005, 54(5): 2030-2033. doi: 10.7498/aps.54.2030
    [18] 陈岩松, 李德华. 一种设计二元衍射元件的优化方法. 物理学报, 1996, 45(8): 1331-1336. doi: 10.7498/aps.45.1331
    [19] 朱传贵, 薛鸣球, 刘德森, 高应俊. 光学元件阵列的衍射理论分析. 物理学报, 1993, 42(3): 394-399. doi: 10.7498/aps.42.394
    [20] 西门纪业, 晏继文. 从电子显微镜的象面和衍射面强度复原相位的计算实例. 物理学报, 1983, 32(6): 762-769. doi: 10.7498/aps.32.762
计量
  • 文章访问数:  5199
  • PDF下载量:  362
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-08
  • 修回日期:  2016-12-30
  • 刊出日期:  2017-05-05

/

返回文章
返回