搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

嵌入式三色光变器

徐平 袁霞 杨拓 黄海漩 唐少拓 黄燕燕 肖钰斐 彭文达

引用本文:
Citation:

嵌入式三色光变器

徐平, 袁霞, 杨拓, 黄海漩, 唐少拓, 黄燕燕, 肖钰斐, 彭文达

Design of embedded tri-color shift device

Xu Ping, Yuan Xia, Yang Tuo, Huang Hai-Xuan, Tang Shao-Tuo, Huang Yan-Yan, Xiao Yu-Fei, Peng Wen-Da
PDF
导出引用
  • 为了提升现有导模共振防伪光变器件的性能,设计了一种基于ZnS覆盖膜的一维单周期矩形结构三色光变器.当自然光入射角为45时,可在0,58,90方位角分别获得相应的蓝、绿、红三色反射峰,对研究结果进行了物理解释.分析并提出了该器件周期、槽深、膜厚以及入射角变化对反射峰的影响规律,对器件的设计、制作和测试有重要指导作用.三色光变器基于简单结构实现方位角调节的自然光三色光变效果,可运用传统激光全息产业的模压和蒸镀工艺进行制作,在光变图像防伪领域有重要应用.
    To improve the performance of existing guided-mode resonance (GMR) anti-counterfeiting grating, a tri-color shift device based on a one-dimensional (1D) singly periodic rectangular structure and ZnS film is reported. By turning the azimuths, the proposed device exhibits tri-color shifts of blue, green, and red for both TE and TM polarizations simultaneously. As the natural light can be considered as a superposition of TE and TM polarizations, in order to achieve the azimuth-tuned tri-color shifts of blue, green, and red, the wavebands and magnitudes of the reflection peaks for TE and TM polarizations should be designed at three azimuths, that is, at the first azimuth, high reflectivity in blue band and low reflectivity in green and red band should be reached; at the second azimuth, high reflectivity in green band and low reflectivity in blue and red band should be reached; at the third azimuth, high reflectivity in red band and low reflectivity in blue and green band should be reached. Considering these design goals, the evaluation function is established. By making the rigorous coupled wave analysis, the 0th reflectivity of the device can be numerically solved, which is relative to the incident light parameters (, , , ), the structure parameters (f, T, dg, dc), as well as the refractive indices of all the regions (ni, nc, ns). There is no analytical relationship between these parameters and the 0th reflectivity. So genetic algorithm is used to optimize the evaluation function, and then the optimal parameters of the tri-color shift device are obtained. When T=431.5 nm, dg=124.2 nm, dc=13.1 nm, f=0.5, and =45, at azimuth angle 0, natural light has reflection peaks at 468 nm and 442 nm; at azimuth angle 58, natural light has reflection peaks at 557 nm and 521 nm; at azimuth angle 90, natural light has reflection peaks at 690 nm, 673 nm, 650 nm and 644 nm. As a result, the device exhibits blue, green and red color responses at 0, 58 and 90 azimuth, respectively. The research results are explained in physics. Furthermore, the influences of key parameters on the reflection peaks are investigated. It is found that the reflection peaks of blue, green and red light are red-shifted with the increase of device period, groove depth, coating thickness and the decrease of incident angle. When the period, depth, thickness, and the incident angle are changed by 4.6% ( 20 nm), 27.4% ( 34 nm), 100% ( 13.1 nm), and 11.1% ( 5) with respect to the original designs, respectively, the device can well keep the color-shift effects of blue, green and red. The results above are meaningful in the designing, manufacturing and testing of the device. Compared with the existing GMR anti-counterfeiting grating, the tri-color shift device has high anti-counterfeit and appreciative value because of the harder designing and richer visual effect. Moreover, the 1D simple periodical structure is good for the manufacture of the high-precision master masks, and the device can be massively produced at low cost by the traditional embossing and evaporating technique in the laser holography industry. This tri-color shift device breaks through the limit of bi-color shifting technology, and may have great applications in the field of the optically variable image security.
      通信作者: 黄海漩, hhx@szu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61275167,60878036)和深圳市基础研究计划(批准号:JCYJ20140418095735591,JCYJ20130329103020637,} JC201005280533A)资助的课题.
      Corresponding author: Huang Hai-Xuan, hhx@szu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61275167, 60878036) and the Basic Research Project of Shenzhen, China (Grant Nos. JCYJ20140418095735591, JCYJ20130329103020637, JC201005280533A).
    [1]

    Gale M T, Knop K, Morf R 1990 SPIE 1210 83

    [2]

    Renesse R L V 1998 Optical Document Security (3rd Ed.) (London: Artech House) pp212-218

    [3]

    Wu M L, Hsu C L, Lan H C, Huang H I, Liu Y C, Tu Z R, Lee C C, Lin J S, Su C C, Chang J Y 2007 Opt. Lett. 32 1614

    [4]

    Ye Y, Chen L S 2008 Acta Opt. Sin. 28 2255 (in Chinese) [叶燕, 陈林森 2008 光学学报 28 2255]

    [5]

    Chen Y L, Liu W X 2011 Opt. Eng. 50 048001

    [6]

    Chen Y L, Liu W X, Cai S Y 2012 J. Opt. Technol. 79 758

    [7]

    Uddin M J, Magnusson R 2013 Opt. Express 21 12495

    [8]

    Uddin M J, Khaleque T, Magnusson R 2014 Opt. Express 22 12307

    [9]

    Chen Y L, Liu W X 2012 Opt. Lett. 37 4

    [10]

    Pesala B, Madhusudan M 2013 SPIE 8633 86330D

    [11]

    Uddin M J, Magnusson R 2012 IEEE Photon. Technol. Lett. 24 1552

    [12]

    Magnusson R, Wang S S 1992 Appl. Phys. Lett. 61 1022

    [13]

    Wang S S, Magnusson R 1993 Appl. Opt. 32 2606

    [14]

    Fehrembach A L, Sentenac A 2005 Appl. Phys. Lett. 86 121105

    [15]

    Boyko O, Lemarchand F, Talneau A, Fehrembach A L, Sentenac A 2009 J. Opt. Soc. Am. A 26 676

    [16]

    Hu X H, Gong Ke, Sun T Y, Wu D M 2010 Chin. Phys. Lett. 27 74211

    [17]

    Fehrembach A L, Yu K C S, Monmayrant A, Arguel P, Sentenac A, Oliver G L 2011 Opt. Lett. 36 1662

    [18]

    Hong L, Yang C Y, Shen W D, Ye H, Zhang Y G, Liu X 2013 Acta Phys. Sin. 62 064204 (in Chinese) [洪亮, 杨陈楹, 沈伟东, 叶辉, 章岳光, 刘旭 2013 物理学报 62 064204]

    [19]

    Xu P, Hong C Q, Cheng G X, Zhou L, Sun Z L 2015 Opt. Express 23 6773

    [20]

    Xu P, Huang Y Y, Su Z J, Zhang X L, Luo T Z, Peng W D 2015 Opt. Express 23 4887

    [21]

    Huang H X, Ruan S C, Yang T, Xu P 2015 Nano-Micro Lett. 7 177

    [22]

    Huang H X, Xu P, Ruan S C, Yang T, Yuan X, Huang Y Y 2015 Acta Phys. Sin. 64 154212 (in Chinese) [黄海漩, 徐平, 阮双琛, 杨拓, 袁霞, 黄燕燕 2015 物理学报 64 154212]

    [23]

    Xu P, Huang Y Y, Zhang X L, Huang J F, Li B B, Ye E, Duan S F, Su Z J 2013 Opt. Express 21 20159

    [24]

    Xu P, Huang H X, Wang K, Ruan S C, Yang J, Wan L L, Chen X X, Liu J Y 2007 Opt. Express 15 809

    [25]

    Xu P, Yuan X, Huang H X, Yang T, Huang Y Y, Zhu T F, Tang S T, Peng W D 2016 Nanoscale Res. Lett. 11 485

    [26]

    Xu P, Yuan X, Huang H X, Yang T 2014 CN Patent 2014103957471 (in Chinese) [徐平, 袁霞, 黄海漩, 杨拓 2014 中国发明专利 2014103957471]

    [27]

    Wang Q, Zhang D W, Xu B L, Huang Y S, Tao C X, Wang C F, Li B C, Ni Z J, Zhuang S L 2011 Opt. Lett. 36 4698

    [28]

    Moharam M G, Grann E B, Pommet D A, Gaylord T K 1995 J. Opt. Soc. Am. A 12 1068

    [29]

    Golubenko G A, Svakhin A S, Sychugov V A 1985 Quantum Electron 15 886

  • [1]

    Gale M T, Knop K, Morf R 1990 SPIE 1210 83

    [2]

    Renesse R L V 1998 Optical Document Security (3rd Ed.) (London: Artech House) pp212-218

    [3]

    Wu M L, Hsu C L, Lan H C, Huang H I, Liu Y C, Tu Z R, Lee C C, Lin J S, Su C C, Chang J Y 2007 Opt. Lett. 32 1614

    [4]

    Ye Y, Chen L S 2008 Acta Opt. Sin. 28 2255 (in Chinese) [叶燕, 陈林森 2008 光学学报 28 2255]

    [5]

    Chen Y L, Liu W X 2011 Opt. Eng. 50 048001

    [6]

    Chen Y L, Liu W X, Cai S Y 2012 J. Opt. Technol. 79 758

    [7]

    Uddin M J, Magnusson R 2013 Opt. Express 21 12495

    [8]

    Uddin M J, Khaleque T, Magnusson R 2014 Opt. Express 22 12307

    [9]

    Chen Y L, Liu W X 2012 Opt. Lett. 37 4

    [10]

    Pesala B, Madhusudan M 2013 SPIE 8633 86330D

    [11]

    Uddin M J, Magnusson R 2012 IEEE Photon. Technol. Lett. 24 1552

    [12]

    Magnusson R, Wang S S 1992 Appl. Phys. Lett. 61 1022

    [13]

    Wang S S, Magnusson R 1993 Appl. Opt. 32 2606

    [14]

    Fehrembach A L, Sentenac A 2005 Appl. Phys. Lett. 86 121105

    [15]

    Boyko O, Lemarchand F, Talneau A, Fehrembach A L, Sentenac A 2009 J. Opt. Soc. Am. A 26 676

    [16]

    Hu X H, Gong Ke, Sun T Y, Wu D M 2010 Chin. Phys. Lett. 27 74211

    [17]

    Fehrembach A L, Yu K C S, Monmayrant A, Arguel P, Sentenac A, Oliver G L 2011 Opt. Lett. 36 1662

    [18]

    Hong L, Yang C Y, Shen W D, Ye H, Zhang Y G, Liu X 2013 Acta Phys. Sin. 62 064204 (in Chinese) [洪亮, 杨陈楹, 沈伟东, 叶辉, 章岳光, 刘旭 2013 物理学报 62 064204]

    [19]

    Xu P, Hong C Q, Cheng G X, Zhou L, Sun Z L 2015 Opt. Express 23 6773

    [20]

    Xu P, Huang Y Y, Su Z J, Zhang X L, Luo T Z, Peng W D 2015 Opt. Express 23 4887

    [21]

    Huang H X, Ruan S C, Yang T, Xu P 2015 Nano-Micro Lett. 7 177

    [22]

    Huang H X, Xu P, Ruan S C, Yang T, Yuan X, Huang Y Y 2015 Acta Phys. Sin. 64 154212 (in Chinese) [黄海漩, 徐平, 阮双琛, 杨拓, 袁霞, 黄燕燕 2015 物理学报 64 154212]

    [23]

    Xu P, Huang Y Y, Zhang X L, Huang J F, Li B B, Ye E, Duan S F, Su Z J 2013 Opt. Express 21 20159

    [24]

    Xu P, Huang H X, Wang K, Ruan S C, Yang J, Wan L L, Chen X X, Liu J Y 2007 Opt. Express 15 809

    [25]

    Xu P, Yuan X, Huang H X, Yang T, Huang Y Y, Zhu T F, Tang S T, Peng W D 2016 Nanoscale Res. Lett. 11 485

    [26]

    Xu P, Yuan X, Huang H X, Yang T 2014 CN Patent 2014103957471 (in Chinese) [徐平, 袁霞, 黄海漩, 杨拓 2014 中国发明专利 2014103957471]

    [27]

    Wang Q, Zhang D W, Xu B L, Huang Y S, Tao C X, Wang C F, Li B C, Ni Z J, Zhuang S L 2011 Opt. Lett. 36 4698

    [28]

    Moharam M G, Grann E B, Pommet D A, Gaylord T K 1995 J. Opt. Soc. Am. A 12 1068

    [29]

    Golubenko G A, Svakhin A S, Sychugov V A 1985 Quantum Electron 15 886

  • [1] 朱雨雯, 袁丛龙, 刘炳辉, 王骁乾, 郑致刚. 基于LCP /TLC的复合多维偏振型防伪器件. 物理学报, 2023, 72(17): 174206. doi: 10.7498/aps.72.20230850
    [2] 贾朝阳, 高当丽, 于佳, 胡媛媛, 柴瑞鹏, 庞庆, 张翔宇. 镧系离子掺杂Li0.9K0.1NbO3荧光粉的多色多模荧光调控及防伪应用. 物理学报, 2023, 72(22): 224210. doi: 10.7498/aps.72.20230517
    [3] 汪静丽, 张见哲, 陈鹤鸣. 基于亚波长光栅和三明治结构的偏振无关微环谐振器的设计与仿真. 物理学报, 2021, 70(12): 124201. doi: 10.7498/aps.70.20201965
    [4] 徐平, 唐少拓, 袁霞, 黄海漩, 杨拓, 罗统政, 喻珺. 嵌入式三色光变器设计. 物理学报, 2018, 67(2): 024202. doi: 10.7498/aps.67.20170782
    [5] 祁云平, 南向红, 摆玉龙, 王向贤. 基于SPPs-CDEW混合模式的亚波长单缝多凹槽结构全光二极管. 物理学报, 2017, 66(11): 117102. doi: 10.7498/aps.66.117102
    [6] 陈刚, 温中泉, 武志翔. 光学超振荡与超振荡光学器件. 物理学报, 2017, 66(14): 144205. doi: 10.7498/aps.66.144205
    [7] 姜美玲, 郑立恒, 池骋, 朱星, 方哲宇. 阴极荧光在表面等离激元研究领域的应用. 物理学报, 2017, 66(14): 144201. doi: 10.7498/aps.66.144201
    [8] 蒋忠君, 刘建军. 超振荡及其远场聚焦成像研究进展. 物理学报, 2016, 65(23): 234203. doi: 10.7498/aps.65.234203
    [9] 黄海漩, 徐平, 阮双琛, 杨拓, 袁霞, 黄燕燕. 太赫兹偶数分束器设计与公差分析. 物理学报, 2015, 64(15): 154212. doi: 10.7498/aps.64.154212
    [10] 湛胜高, 梁斌明, 朱幸福, 陈家壁, 庄松林. 基于空气孔的光子晶体亚波长成像的特性研究. 物理学报, 2014, 63(15): 154212. doi: 10.7498/aps.63.154212
    [11] 胡梦珠, 周思阳, 韩琴, 孙华, 周丽萍, 曾春梅, 吴兆丰, 吴雪梅. 紫外表面等离激元在基于氧化锌纳米线的半导体-绝缘介质-金属结构中的输运特性研究. 物理学报, 2014, 63(2): 029501. doi: 10.7498/aps.63.029501
    [12] 王培培, 杨超杰, 李洁, 唐鹏, 林峰, 朱星. 金膜上亚波长小孔阵列表面等离激元颜色滤波器偏振性质. 物理学报, 2013, 62(16): 167302. doi: 10.7498/aps.62.167302
    [13] 梁木生, 王秉中, 章志敏, 丁帅, 臧锐. 基于远场时间反演的亚波长天线阵列研究. 物理学报, 2013, 62(5): 058401. doi: 10.7498/aps.62.058401
    [14] 梁高峰, 赵青, 陈欣, 王长涛, 赵泽宇, 罗先刚. 基于多层膜结构的亚波长光栅研究. 物理学报, 2012, 61(10): 104203. doi: 10.7498/aps.61.104203
    [15] 童元伟, 田双, 庄松林. 等效折射率为非-1时的亚波长成像. 物理学报, 2011, 60(5): 054201. doi: 10.7498/aps.60.054201
    [16] 于永江, 陈建农, 闫金良, 王菲菲. 聚焦径向调制Bessel-Gaussian光束实现亚波长尺寸纵向偏振光束. 物理学报, 2011, 60(4): 044205. doi: 10.7498/aps.60.044205
    [17] 宋国峰, 汪卫敏, 蔡利康, 郭宝山, 王青, 徐云, 韦欣, 刘运涛. 表面等离子激元调制的亚波长束斑半导体激光器. 物理学报, 2010, 59(7): 5105-5109. doi: 10.7498/aps.59.5105
    [18] 李敏, 张志友, 石莎, 杜惊雷. 亚波长金属聚焦透镜结构参数的优化与分析. 物理学报, 2010, 59(2): 958-963. doi: 10.7498/aps.59.958
    [19] 孟繁义, 吴 群, 傅佳辉, 顾学迈, 李乐伟. 三维各向异性超常媒质交错结构的亚波长谐振特性研究. 物理学报, 2008, 57(10): 6213-6220. doi: 10.7498/aps.57.6213
    [20] 易永祥, 汪国平, 龙拥兵, 单 红. 二维亚波长金属小孔阵列的透射光增强效应. 物理学报, 2003, 52(3): 604-608. doi: 10.7498/aps.52.604
计量
  • 文章访问数:  4516
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-01
  • 修回日期:  2017-04-17
  • 刊出日期:  2017-06-05

/

返回文章
返回