搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mg-Al系工业合金牌号的成分式解析

钱圣男 董闯

引用本文:
Citation:

Mg-Al系工业合金牌号的成分式解析

钱圣男, 董闯

Composition formulas for Mg-Al industrial alloy specifications

Qian Sheng-Nan, Dong Chuang
PDF
导出引用
  • Mg-Al系牌号是应用最广的镁基工业合金,但其牌号背后的成分根源一直未知,构成研发新合金的主要障碍.本文应用描述固溶体短程序结构特征的团簇共振模型,得到了Mg-Al二元固溶体的最理想化学结构单元[Al-Mg12]Mg1,然后对《the American Society for Testing Materials》手册中所有Mg-Al系工业合金牌号进行成分解析,得到相应团簇成分式,如AZ63A合金解析后的团簇成分式为[Al0.78Zn0.16-Mg12]Mg1.04Mn0.02,AZ81A合金解析后的团簇成分式为[Al0.97Zn0.03-Mg12]Mg0.98Mn0.02.再根据成分式与化学结构单元之间的误差,对比该牌号合金的力学性能,验证了该化学结构单元在Mg-Al体系中的准确性,揭示出看似复杂的工业合金牌号后面隐藏的简单成分规律,为发展Mg-Al体系合金指出了一个全新的途径.
    Mg-Al alloys are the most widely used Mg-based industrial alloys, but their composition rules behind the apparent industrial specifications are largely unknown, which hinders the development of new alloys. As is well known, industrial alloys often undergo the process of a high-temperature solution treatment, and the final structures originate from the single-phase solid solution parent state. Since solid solutions are characterized by short-range chemical orders, necessarily the optimum alloy composition should be related to the presence of a certain short-range chemical structure unit. In the present paper, by introducing our cluster-resonance model for short-range-order structure description of solid solutions, a chemical structure unit of Mg-Al binary solid solution is established,[Al-Mg12]Mg1, which represents the characteristic short-range-order structure, with the bracketed part being the nearest-neighbor cluster centered by Al and shelled by 12Mg and with one glue atom Mg located between the clusters. Because of the existence of other alloying elements besides Al, a general formula[(Al, A)1-Mg12]-(Mg, B) is then proposed, where A represents the elements showing a negative mixing enthalpy with Mg, while B showing a positive one. This formula is used to explain the multi-component Mg-Al industrial alloys. Based on this chemical formula, typical Mg-Al industrial alloy specifications in ASTM handbook are well explained. For instance, cast AZ63A alloy is formulated as[Al0.78Zn0.16-Mg12]Mg1.04Mn0.02, cast AZ81A as[Al0.97Zn0.03-Mg12]Mg0.98Mn0.02, and wrought AZ80A as[Al1.02n0.03-Mg12]Mg0.94Mn0.01. The deviations from the ideal chemical structure unit in different Mg-Al alloys are well correlated to their corresponding alloy performances. Those alloys, where the numbers of center atoms are close to ones in their cluster formulas, exhibit excellent comprehensive mechanical performances in both strength and plasticity. While the alloy with less than one center atom only shows good plastic performance with a relatively poor strength, and the one with more than one center atom shows just the reverse tendency. Among cast Mg-Al alloys, AZ81A, whose cluster formula completely matches the stable chemical structure unit, exhibits the optimized combination of strength (275 MPa) and plasticity (elongation 15%). Among wrought Mg-Al alloys, AZ61A and AZ80A, whose cluster formulas show minor deviations of -0.11 and 0.05 in the center site from the ideal chemical structure unit, also have good comprehensive mechanical properties, respectively with the strengths of 310 MPa and 380 MPa, and the elongations of 16% and 7%. Based on the results in the present paper, the simple composition rule behind the complex industrial alloy specifications as unveiled here, can be a powerful approach to the development of Mg-Al alloys.
      通信作者: 董闯, dong@dlut.edu.cn
    • 基金项目: 国家重点研发计划项目(批准号:2016YFB0701201)资助的课题.
      Corresponding author: Dong Chuang, dong@dlut.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No.2016YFB0701201).
    [1]

    Hume-Rothery W, Smallman R E, Haworth C W 1969 The Structure of Metals and Alloys (London:The Institute of Metals)

    [2]

    Cahn R W 1978 Nature 271 407

    [3]

    Jones H 1980 Proc. R. Soc. London Ser. A 371 52

    [4]

    Friedel J 1954 Adv. Phys. 3 446

    [5]

    Dong D D, Zhang S, Wang Z R, Dong C 2015 J. Appl. Crystallogr. 48 2002

    [6]

    Dong C, Wang Q, Qiang J B, Wang Y M, Jiang N, Han G, Li Y H, Wu J, Xia J H 2007 J. Phys. D:Appl. Phys. 40 273

    [7]

    Han G, Qiang J B, Li F W, Yuan L, Quan S G, Wang Q, Wang Y M, Dong C, Hässlerc P 2011 Acta Mater. 59 5917

    [8]

    Luo L J, Chen H, Wang Y M, Qiang J B, Wang Q, Dong C, Hässlerc P 2014 Philos. Mag. 94 2520

    [9]

    Dong C 1995 Scripta Metal. Mater. 33 239

    [10]

    Chen H, Wang Q, Wang Y, Qiang J, Dong C 2010 Philos. Mag. 90 3935

    [11]

    Chen H, Qiang J, Wang Q, Wang Y, Dong C 2011 Isr. J. Chem. 51 1226

    [12]

    Wang Q, Dong C, Qiang J, Wang Y 2007 Mater. Sci. Eng. A 449 18

    [13]

    Zhu C L, Wang Q, Li F W, Li Y H, Wang Y M, Dong C, Zhang W, Inoue A 2009 J. Phys.:Conference Series (London:IOP Publishing) 144 p012048

    [14]

    Luo L, Wu J, Wang Q, Wang Y, Han G, Dong C 2010 Philos. Mag. 90 3961

    [15]

    Wang Y, Wang Q, Zhao J, Dong C 2010 Scripta Mater. 63 178

    [16]

    Yuan L, Pang C, Wang Y, Wang Q, Qiang J, Dong C 2010 Intermetallics 18 1800

    [17]

    Li F W, Qiang J B, Wang Q, Wang Y M, Dong X L, Dong C, Zhu S J 2012 Intermetallics 30 86

    [18]

    Wang Z R, Dong D D, Qiang J B, Wang Q, Wang Y M, Dong C 2013 Sci. China:Phys. Mech. 56 1419

    [19]

    Geng Y X, Han K M, Wang Y M, Qiang J B, Wang Q, Dong C, Zhang G F, Tegus O, H Hösslerc P 2015 Acta Metall. Sin. 51 1017 (in Chinese)[耿遥祥, 韩凯明, 王英敏, 羌建兵, 王清, 董闯, 张贵峰, 特古斯, Hässlerc P 2015 金属学报 51 1017]

    [20]

    Zhang J, Wang Q, Wang Y M, Dong C 2009 Acta Metall. Sin. 45 1390 (in Chinese)[张杰, 王清, 王英敏, 董闯 2009 金属学报 45 1390]

    [21]

    Ma R T, Hao C P, Wang Q, Ren M F, Wang Y M, Dong C 2010 Acta Metall. Sin. 46 1034 (in Chinese)[马仁涛, 郝传璞, 王清, 任明法, 王英敏, 董闯 2010 金属学报 46 1034]

    [22]

    Chen J X, Qiang J B, Wang Q, Dong C 2012 Acta Phys. Sin. 61 046102 (in Chinese)[陈季香, 羌建兵, 王清, 董闯 2012 物理学报 61 046102]

    [23]

    Wang Q, Zha Q F, Liu E X, Dong C, Wang X J, Tan Z X, Ji C J 2012 Acta Metall. Sin. 48 1201 (in Chinese)[王清, 查钱锋, 刘恩雪, 董闯, 王学军, 谭朝鑫, 冀春俊 2012 金属学报 48 1201]

    [24]

    Wang Q, Li Q, Li X, Zhang R, Gao X, Dong C, Liaw P K 2015 Metall. Mater. Trans. A 46 3924

    [25]

    Hong H, Wang Q, Dong C 2015 Sci. China:Mater. 58 355

    [26]

    Zhang J, Wang Q, Wang Y, Li C, Wen L, Dong C 2010 J. Mater. Res. 25 328

    [27]

    Zhang J, Wang Q, Wang Y M, Wen L S, Dong C 2010 J. Alloys Compd. 505 505

    [28]

    Zhang J, Wang Q, Wang Y M, Wen L S, Dong C 2010 J. Alloys Compd. 505 179

    [29]

    Hong H L, Wang Q, Dong C, Liaw P K 2014 Sci. Rep. 4 7065

    [30]

    Reinhard L, Schönfeld B, Kostorz G, Bhrer W 1990 Phys. Rev. B 41 1727

    [31]

    Pang C 2015 Cluster Structure Model for BCC Substitutional Solid Solutions and the Application for Alloy Composition Design (Dalian:Dalian University of Technology) (in Chinese)[庞厰 2015 体心立方置换固溶体的团簇结构模型及其在合金成分设计中的应用 (大连:大连理工大学)]

    [32]

    Dong D D 2017 Composition Origin of Metallic Glasses and Solid Solution Alloys:Short-range-order Structural Unit (Dalian:Dalian University of Technology) (in Chinese)[董丹丹 2017 金属玻璃和固溶体合金的成分根源:近程序结构单元 (大连:大连理工大学)]

    [33]

    Takeuchi A, Inoue A 2005 Mater. Trans. 46 2817

    [34]

    Pearson W B, Villars P, Calvert L D 1985 American Society for Metals 1985 3258

    [35]

    Fiepke J W 1992 ASM Handbook, Properties and Selection:Nonferrous Alloys and Special-Purpose Materials.

    [36]

    Quan G Z, Ku T W, Song W J, Kang B S 2011 Mater. Des. 32 2462

    [37]

    L C, Liu T, Liu D, Jiang S, Zeng W 2012 Mater. Des. 33 529

    [38]

    Zhao D, Wang Z, Zuo M, Geng H 2014 Mater. Des. 56 589

  • [1]

    Hume-Rothery W, Smallman R E, Haworth C W 1969 The Structure of Metals and Alloys (London:The Institute of Metals)

    [2]

    Cahn R W 1978 Nature 271 407

    [3]

    Jones H 1980 Proc. R. Soc. London Ser. A 371 52

    [4]

    Friedel J 1954 Adv. Phys. 3 446

    [5]

    Dong D D, Zhang S, Wang Z R, Dong C 2015 J. Appl. Crystallogr. 48 2002

    [6]

    Dong C, Wang Q, Qiang J B, Wang Y M, Jiang N, Han G, Li Y H, Wu J, Xia J H 2007 J. Phys. D:Appl. Phys. 40 273

    [7]

    Han G, Qiang J B, Li F W, Yuan L, Quan S G, Wang Q, Wang Y M, Dong C, Hässlerc P 2011 Acta Mater. 59 5917

    [8]

    Luo L J, Chen H, Wang Y M, Qiang J B, Wang Q, Dong C, Hässlerc P 2014 Philos. Mag. 94 2520

    [9]

    Dong C 1995 Scripta Metal. Mater. 33 239

    [10]

    Chen H, Wang Q, Wang Y, Qiang J, Dong C 2010 Philos. Mag. 90 3935

    [11]

    Chen H, Qiang J, Wang Q, Wang Y, Dong C 2011 Isr. J. Chem. 51 1226

    [12]

    Wang Q, Dong C, Qiang J, Wang Y 2007 Mater. Sci. Eng. A 449 18

    [13]

    Zhu C L, Wang Q, Li F W, Li Y H, Wang Y M, Dong C, Zhang W, Inoue A 2009 J. Phys.:Conference Series (London:IOP Publishing) 144 p012048

    [14]

    Luo L, Wu J, Wang Q, Wang Y, Han G, Dong C 2010 Philos. Mag. 90 3961

    [15]

    Wang Y, Wang Q, Zhao J, Dong C 2010 Scripta Mater. 63 178

    [16]

    Yuan L, Pang C, Wang Y, Wang Q, Qiang J, Dong C 2010 Intermetallics 18 1800

    [17]

    Li F W, Qiang J B, Wang Q, Wang Y M, Dong X L, Dong C, Zhu S J 2012 Intermetallics 30 86

    [18]

    Wang Z R, Dong D D, Qiang J B, Wang Q, Wang Y M, Dong C 2013 Sci. China:Phys. Mech. 56 1419

    [19]

    Geng Y X, Han K M, Wang Y M, Qiang J B, Wang Q, Dong C, Zhang G F, Tegus O, H Hösslerc P 2015 Acta Metall. Sin. 51 1017 (in Chinese)[耿遥祥, 韩凯明, 王英敏, 羌建兵, 王清, 董闯, 张贵峰, 特古斯, Hässlerc P 2015 金属学报 51 1017]

    [20]

    Zhang J, Wang Q, Wang Y M, Dong C 2009 Acta Metall. Sin. 45 1390 (in Chinese)[张杰, 王清, 王英敏, 董闯 2009 金属学报 45 1390]

    [21]

    Ma R T, Hao C P, Wang Q, Ren M F, Wang Y M, Dong C 2010 Acta Metall. Sin. 46 1034 (in Chinese)[马仁涛, 郝传璞, 王清, 任明法, 王英敏, 董闯 2010 金属学报 46 1034]

    [22]

    Chen J X, Qiang J B, Wang Q, Dong C 2012 Acta Phys. Sin. 61 046102 (in Chinese)[陈季香, 羌建兵, 王清, 董闯 2012 物理学报 61 046102]

    [23]

    Wang Q, Zha Q F, Liu E X, Dong C, Wang X J, Tan Z X, Ji C J 2012 Acta Metall. Sin. 48 1201 (in Chinese)[王清, 查钱锋, 刘恩雪, 董闯, 王学军, 谭朝鑫, 冀春俊 2012 金属学报 48 1201]

    [24]

    Wang Q, Li Q, Li X, Zhang R, Gao X, Dong C, Liaw P K 2015 Metall. Mater. Trans. A 46 3924

    [25]

    Hong H, Wang Q, Dong C 2015 Sci. China:Mater. 58 355

    [26]

    Zhang J, Wang Q, Wang Y, Li C, Wen L, Dong C 2010 J. Mater. Res. 25 328

    [27]

    Zhang J, Wang Q, Wang Y M, Wen L S, Dong C 2010 J. Alloys Compd. 505 505

    [28]

    Zhang J, Wang Q, Wang Y M, Wen L S, Dong C 2010 J. Alloys Compd. 505 179

    [29]

    Hong H L, Wang Q, Dong C, Liaw P K 2014 Sci. Rep. 4 7065

    [30]

    Reinhard L, Schönfeld B, Kostorz G, Bhrer W 1990 Phys. Rev. B 41 1727

    [31]

    Pang C 2015 Cluster Structure Model for BCC Substitutional Solid Solutions and the Application for Alloy Composition Design (Dalian:Dalian University of Technology) (in Chinese)[庞厰 2015 体心立方置换固溶体的团簇结构模型及其在合金成分设计中的应用 (大连:大连理工大学)]

    [32]

    Dong D D 2017 Composition Origin of Metallic Glasses and Solid Solution Alloys:Short-range-order Structural Unit (Dalian:Dalian University of Technology) (in Chinese)[董丹丹 2017 金属玻璃和固溶体合金的成分根源:近程序结构单元 (大连:大连理工大学)]

    [33]

    Takeuchi A, Inoue A 2005 Mater. Trans. 46 2817

    [34]

    Pearson W B, Villars P, Calvert L D 1985 American Society for Metals 1985 3258

    [35]

    Fiepke J W 1992 ASM Handbook, Properties and Selection:Nonferrous Alloys and Special-Purpose Materials.

    [36]

    Quan G Z, Ku T W, Song W J, Kang B S 2011 Mater. Des. 32 2462

    [37]

    L C, Liu T, Liu D, Jiang S, Zeng W 2012 Mater. Des. 33 529

    [38]

    Zhao D, Wang Z, Zuo M, Geng H 2014 Mater. Des. 56 589

  • [1] 姜福仕, 王伟华, 李鸿明, 王清, 董闯. Ni-Al-Cr合金中团簇加连接原子模型的第一性原理计算. 物理学报, 2022, 71(20): 207101. doi: 10.7498/aps.71.20221036
    [2] 万法琦, 马艳平, 董丹丹, 丁万昱, 姜宏, 董闯, 贺建雄. 氧化物玻璃中的类分子结构单元. 物理学报, 2020, 69(13): 136101. doi: 10.7498/aps.69.20191892
    [3] 马启慧, 张宇, 王清, 董红刚, 董闯. Co-Al-W基高温合金的团簇成分式. 物理学报, 2019, 68(6): 062101. doi: 10.7498/aps.68.20181030
    [4] 姜贝贝, 王清, 董闯. 基于固溶体短程序结构的团簇式合金成分设计方法. 物理学报, 2017, 66(2): 026102. doi: 10.7498/aps.66.026102
    [5] 王同, 胡小刚, 吴爱民, 林国强, 于学文, 董闯. 以团簇加连接原子模型解析Cr-C共晶成分. 物理学报, 2017, 66(9): 092101. doi: 10.7498/aps.66.092101
    [6] 洪海莲, 董闯, 王清, 张宇, 耿遥祥. 面心立方固溶体合金的团簇加连接原子几何模型及典型工业合金成分解析. 物理学报, 2016, 65(3): 036101. doi: 10.7498/aps.65.036101
    [7] 吕瑾, 杨丽君, 王艳芳, 马文瑾. Al2Sn(n=210)团簇结构特征和稳定性的密度泛函理论研究. 物理学报, 2014, 63(16): 163601. doi: 10.7498/aps.63.163601
    [8] 吕瑾, 秦健萍, 武海顺. ConAl (n= 18)合金团簇结构和磁性质研究. 物理学报, 2013, 62(5): 053101. doi: 10.7498/aps.62.053101
    [9] 苏妍妍, 龚伯仪, 赵晓鹏. 基于双负介质结构单元的零折射率超材料. 物理学报, 2012, 61(8): 084102. doi: 10.7498/aps.61.084102
    [10] 韩光, 羌建兵, 王清, 王英敏, 夏俊海, 朱春雷, 全世光, 董闯. 源于团簇-共振模型的理想金属玻璃电子化学势均衡. 物理学报, 2012, 61(3): 036402. doi: 10.7498/aps.61.036402
    [11] 龚伯仪, 周欣, 赵晓鹏. 光频三维各向同性左手超材料结构单元模型的仿真设计. 物理学报, 2011, 60(4): 044101. doi: 10.7498/aps.60.044101
    [12] 郝传璞, 王清, 马仁涛, 王英敏, 羌建兵, 董闯. 体心立方固溶体合金中的团簇+连接原子结构模型. 物理学报, 2011, 60(11): 116101. doi: 10.7498/aps.60.116101
    [13] 保石, 罗春荣, 张燕萍, 赵晓鹏. 基于树枝结构单元的超材料宽带微波吸收器. 物理学报, 2010, 59(5): 3187-3191. doi: 10.7498/aps.59.3187
    [14] 王甲富, 屈绍波, 徐卓, 张介秋, 马华, 杨一鸣, 吴翔, 鲁磊. 基于金属结构单元间耦合的左手材料的设计及实验验证. 物理学报, 2010, 59(6): 4018-4022. doi: 10.7498/aps.59.4018
    [15] 郑晓军, 张俊, 黄忠兵. 扩展哈伯德模型中原子团簇的结构和热力学性质研究. 物理学报, 2010, 59(6): 3897-3904. doi: 10.7498/aps.59.3897
    [16] 侯兆阳, 刘丽霞, 刘让苏, 田泽安. Al-Mg合金熔体快速凝固过程中微观结构演化机理的模拟研究. 物理学报, 2009, 58(7): 4817-4825. doi: 10.7498/aps.58.4817
    [17] 刘亚红, 罗春荣, 赵晓鹏. 同时实现介电常数和磁导率为负的H型结构单元左手材料. 物理学报, 2007, 56(10): 5883-5889. doi: 10.7498/aps.56.5883
    [18] 谌晓洪, 高 涛, 朱正和, 罗顺中. Al2O3Hx(x=1—3)分子团簇的结构与光谱研究. 物理学报, 2007, 56(1): 178-185. doi: 10.7498/aps.56.178
    [19] 王红艳, 李喜波, 唐永建, 谌晓洪, 王朝阳, 朱正和. AunXm(n+m=4,X=Cu,Al,Y)混合小团簇的结构和稳定性研究. 物理学报, 2005, 54(8): 3565-3570. doi: 10.7498/aps.54.3565
    [20] 赵辉, 杜志伟, 周铁涛, 刘培英, 董宝中, 陈昌麒. Al-Zn-Mg-Cu-Li合金时效过程微结构演化的小角x射线散射研究. 物理学报, 2004, 53(4): 1251-1254. doi: 10.7498/aps.53.1251
计量
  • 文章访问数:  5016
  • PDF下载量:  204
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-09
  • 修回日期:  2017-05-02
  • 刊出日期:  2017-07-05

/

返回文章
返回