搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

毛细管放电类氖氩69.8 nm激光增益特性研究

刘涛 赵永蓬 丁宇洁 李小强 崔怀愈 姜杉

引用本文:
Citation:

毛细管放电类氖氩69.8 nm激光增益特性研究

刘涛, 赵永蓬, 丁宇洁, 李小强, 崔怀愈, 姜杉

Characteristics of gain in Ne-like Ar 69.8 nm laser pumped by capillary discharge

Liu Tao, Zhao Yong-Peng, Ding Yu-Jie, Li Xiao-Qiang, Cui Huai-Yu, Jiang Shan
PDF
导出引用
  • 建立了计算69.8 nm激光增益系数的理论模型,根据实验参数,计算了在主脉冲电流为12 kA时,69.8 nm激光增益系数最大值为0.32 cm-1.理论模拟了不同初始气压下增益系数在毛细管径向上的分布情况.对理论结果的分析表明,最佳的初始气压在1214 Pa范围内,此时69.8 nm激光增益系数的极值最大.实验上,利用毛细管放电装置和罗兰光谱仪,测量了不同气压下的69.8 nm激光强度,实验确定的最佳气压为16 Pa,与理论结果相近.此外,实验测量的增益系数(0.4 cm-1)略高于理论计算的增益系数(0.32 cm-1).
    In this paper, the theoretical calculation model of the gain coefficient of Ne-like Ar 69.8 nm laser is established. With the collisional-radiative model, the rate equations for the 46.9 nm and 69.8 nm lasers are built by considering the 4 levels of the 2s2p6 1S0, 2p53p 1S0, 2p53p 3P2, and 2p53s 1P1. The gain coefficients per ion density of 46.9 nm and 69.8 nm lasers are calculated on the basis of the rate equations. The results show that the 46.9 nm laser has potential of higher gain than the 69.8 nm laser at an electron temperature of 200 eV. The gain coefficients per ion density at different electron temperatures are also calculated. Under the same electron density, the higher electron temperature is favorable for increasing the gain coefficients per ion density of the 69.8 nm laser. Meanwhile there is also an optimal electron density corresponding to the maximum gain coefficient per ion density of the 69.8 nm laser at a given electron temperature. Then a one-dimensional cylindrical symmetry Lagrangian magneto-hydrodynamics (MHD) code is utilized to simulate the Z-pinch process. The radial distributions of the electron temperatures, the electron densities and the Ne-like Ar ion densities are calculated with the MHD code at the different initial pressures. According to the rate equations for the 69.8 nm laser and the simulation results of the MHD code, the gain coefficient distribution of 69.8 nm laser in the radial direction of the plasma can be determined when the plasma is compressed to a minimum radius. According to the experimental parameters, the maximum gain coefficient of 69.8 nm laser is calculated to be 0.32 cm-1 when the main pulse current is 12 kA. The relationship between the radial distribution of gain coefficient of 69.8 nm laser and the initial pressure is also simulated. The theoretical results show that the optimal initial pressure is in a range of 12-14 Pa, in which the amplitude of gain coefficient is maximum. The experiments about 69.8 nm laser are conducted with Al2O3 capillary which has an inner diameter of 3.2 mm and a length of 35 cm. A main current of 12 kA with a rise time of 32 ns is produced by the main pulse generator, which consists of a Marx generator and a Blumlein line filled with de-ionized water. The Blumlein line is pulse-charged by a ten-stage Marx generator and discharges through the capillary by a self-breakdown main switch pressurized with N2 gas. To reduce the amplitude of main current, we reduce the charging voltage of the Marx generator and increase the conducting inductance of the main switch. Prior to the operation of the main current pulse, the capillary filled with Ar is predischarged by a current of~20 A. The 69.8 nm laser intensity as a function of initial pressure is measured by a 1-m grazing incidence Rowland spectrograph. The experimental results show that the optimum pressure is 16 Pa which is similar to the theoretical result. In addition, the gain coefficient (0.4 cm-1) measured in experiment is slightly higher than that (0.32 cm-1) of the theoretical calculation.
      通信作者: 赵永蓬, zhaoyp3@hit.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61275139)资助的课题.
      Corresponding author: Zhao Yong-Peng, zhaoyp3@hit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.61275139).
    [1]

    Matthews D L, Hagelstein P L, Rosen M D, Eckart M J, Ceglio N M, Hazi A U, Medecki H, Macgowan B J, Trebes J E, Whitten B L 1985 Phys. Rev. Lett. 54 110

    [2]

    Rocca J J, Shlyaptsev V, Tomasel F G, Cortazar O D, Hartshorn D, Chilla J L 1994 Phys. Rev. Lett. 73 2192

    [3]

    Tomasel F G, Rocca J J, Shlyaptsev V N, Macchietto C D 1997 Phys. Rev. A 55 1437

    [4]

    Frati M, Seminario M, Rocca J J 2000 Opt. Lett. 25 1022

    [5]

    ZhaoY P, Jiang S, Xie Y, Yang D W, Teng S P, Chen D Y, Wang Q 2011 Opt. Lett. 36 3458

    [6]

    Moreno C H, Marconi M C, Shlyaptsev V N, Benware B R, Macchietto C D, Chilla J L A, Rocca J J 1998 Phys. Rev. A 58 1509

    [7]

    Kim D E, Kim D S, Osterheld A L 1998 J. Appl. Phys. 84 5862

    [8]

    Kukhlevsky S V, Ritucci A, Kozma I Z, Kaiser J, Shlyaptseva A, Tomassetti G, Samek O 2002 Contrib. Plasm. Phys. 42 109

    [9]

    Lan K, Zhang Y Q, Zheng W D 1999 Phys. Plasma 6 4343

    [10]

    Zheng W D, Peng H M 2002 High Pow. Laser Par. Beams 14 1 (in Chinese) [郑无敌, 彭惠民 2002 强激光与粒子束 14 1]

    [11]

    Zhao Y P, Liu T, Jiang S, Cui H Y, Ding Y J, Li L B 2016 Appl. Phys. B 122 107

    [12]

    Elton R C (translated by Fan P Z) 1996X-Ray Lasers(Beijing: Science Press) pp21-25 (in Chinese) [埃尔顿 著 (范品忠 译) 1996 X射线激光(北京: 科学出版社)第2125页]

    [13]

    Jiang S, Zhao Y P, Cui H Y, Li L B, Ding Y J, Zhang W H, Li W 2015 Contrib. Plasma Phys. 55 570

    [14]

    Zhao Y P, Liu T, Zhang W H, Li W, Cui H Y 2016 Opt. Lett. 41 3779

  • [1]

    Matthews D L, Hagelstein P L, Rosen M D, Eckart M J, Ceglio N M, Hazi A U, Medecki H, Macgowan B J, Trebes J E, Whitten B L 1985 Phys. Rev. Lett. 54 110

    [2]

    Rocca J J, Shlyaptsev V, Tomasel F G, Cortazar O D, Hartshorn D, Chilla J L 1994 Phys. Rev. Lett. 73 2192

    [3]

    Tomasel F G, Rocca J J, Shlyaptsev V N, Macchietto C D 1997 Phys. Rev. A 55 1437

    [4]

    Frati M, Seminario M, Rocca J J 2000 Opt. Lett. 25 1022

    [5]

    ZhaoY P, Jiang S, Xie Y, Yang D W, Teng S P, Chen D Y, Wang Q 2011 Opt. Lett. 36 3458

    [6]

    Moreno C H, Marconi M C, Shlyaptsev V N, Benware B R, Macchietto C D, Chilla J L A, Rocca J J 1998 Phys. Rev. A 58 1509

    [7]

    Kim D E, Kim D S, Osterheld A L 1998 J. Appl. Phys. 84 5862

    [8]

    Kukhlevsky S V, Ritucci A, Kozma I Z, Kaiser J, Shlyaptseva A, Tomassetti G, Samek O 2002 Contrib. Plasm. Phys. 42 109

    [9]

    Lan K, Zhang Y Q, Zheng W D 1999 Phys. Plasma 6 4343

    [10]

    Zheng W D, Peng H M 2002 High Pow. Laser Par. Beams 14 1 (in Chinese) [郑无敌, 彭惠民 2002 强激光与粒子束 14 1]

    [11]

    Zhao Y P, Liu T, Jiang S, Cui H Y, Ding Y J, Li L B 2016 Appl. Phys. B 122 107

    [12]

    Elton R C (translated by Fan P Z) 1996X-Ray Lasers(Beijing: Science Press) pp21-25 (in Chinese) [埃尔顿 著 (范品忠 译) 1996 X射线激光(北京: 科学出版社)第2125页]

    [13]

    Jiang S, Zhao Y P, Cui H Y, Li L B, Ding Y J, Zhang W H, Li W 2015 Contrib. Plasma Phys. 55 570

    [14]

    Zhao Y P, Liu T, Zhang W H, Li W, Cui H Y 2016 Opt. Lett. 41 3779

  • [1] 庄英豪, 傅芸, 蔡伟, 张青松, 吴真, 郭林辉, 钟哲强, 张彬. 半导体激光阵列谱合束系统中光束串扰物理机制分析. 物理学报, 2023, 72(2): 024206. doi: 10.7498/aps.72.20221783
    [2] 王亚楠, 任林渊, 丁卫东, 孙安邦, 耿金越. 腔体结构参数对毛细管放电型脉冲等离子体推力器放电特性的影响. 物理学报, 2021, 70(23): 235204. doi: 10.7498/aps.70.20211198
    [3] 刘涛, 赵永蓬, 崔怀愈, 刘晓琳. 基于双程放大的毛细管放电69.8 nm激光增益特性. 物理学报, 2019, 68(2): 025201. doi: 10.7498/aps.68.20181617
    [4] 赵永蓬, 李连波, 崔怀愈, 姜杉, 刘涛, 张文红, 李伟. 毛细管放电69.8nm激光强度空间分布特性研究. 物理学报, 2016, 65(9): 095201. doi: 10.7498/aps.65.095201
    [5] 柴向旭, 李富全, 王圣来, 冯斌, 朱启华, 刘宝安, 孙洵, 许心光. 氘含量对DKDP晶体横向受激拉曼散射增益系数的影响. 物理学报, 2015, 64(3): 034213. doi: 10.7498/aps.64.034213
    [6] 阮鹏, 谢冀江, 潘其坤, 张来明, 郭劲. 非链式脉冲DF化学激光器反应动力学模型. 物理学报, 2013, 62(9): 094208. doi: 10.7498/aps.62.094208
    [7] 陈蔚, 陈学岗, 史久林, 何兴道, 莫小凤, 刘娟. 变温条件下受激布里渊散射增益系数的实验测量. 物理学报, 2013, 62(10): 104213. doi: 10.7498/aps.62.104213
    [8] 赵建涛, 冯国英, 杨火木, 唐淳, 陈念江, 周寿桓. 薄片激光器热效应及其对输出功率的影响. 物理学报, 2012, 61(8): 084208. doi: 10.7498/aps.61.084208
    [9] 林燕凤, 张戈, 朱海永, 黄呈辉, 李爱红, 魏勇. Nd:YAG调Q激光器双波长振荡机理分析. 物理学报, 2009, 58(6): 3909-3914. doi: 10.7498/aps.58.3909
    [10] 王浩, 刘国权, 岳景朝, 栾军华, 秦湘阁. MacPherson-Srolovitz晶粒长大速率方程的仿真验证. 物理学报, 2009, 58(13): 137-S140. doi: 10.7498/aps.58.137
    [11] 张新陆, 王月珠, 李 立, 崔金辉, 鞠有伦. 端面抽运Tm,Ho∶YLF连续激光器的参数优化与实验研究. 物理学报, 2008, 57(6): 3519-3524. doi: 10.7498/aps.57.3519
    [12] 陈 钢, 庄德文, 张 航, 徐 军, 程 成. 差分法求解时空分布的激光动力学模型. 物理学报, 2008, 57(8): 4953-4959. doi: 10.7498/aps.57.4953
    [13] 乔秀梅, 张国平. 瞬态电子碰撞激发类氖锗19.6nm X射线激光的理论研究. 物理学报, 2007, 56(9): 5248-5251. doi: 10.7498/aps.56.5248
    [14] 张新陆, 王月珠, 李 立, 鞠有伦. 端面抽运Tm, Ho:YLF激光器热转换系数及热透镜效应的研究. 物理学报, 2007, 56(4): 2196-2201. doi: 10.7498/aps.56.2196
    [15] 张新陆, 王月珠, 鞠有伦. 能量传递上转换对Tm,Ho:YLF激光器阈值的影响. 物理学报, 2005, 54(1): 117-122. doi: 10.7498/aps.54.117
    [16] 宋 峰, 苏瑞渊, 傅 强, 覃 斌, 田建国, 张光寅. 高浓度镱铒共掺磷酸盐光纤放大器增益特性. 物理学报, 2005, 54(11): 5228-5232. doi: 10.7498/aps.54.5228
    [17] 赵永蓬, 程元丽, 王 骐, 林 靖, 崛田荣喜. 毛细管放电激励软x射线激光的产生时间. 物理学报, 2005, 54(6): 2731-2734. doi: 10.7498/aps.54.2731
    [18] 程元丽, 栾伯含, 吴寅初, 赵永蓬, 王 骐, 郑无敌, 彭惠民, 杨大为. 预脉冲在毛细管快放电软x射线激光中的作用. 物理学报, 2005, 54(10): 4979-4984. doi: 10.7498/aps.54.4979
    [19] 袁保红, 陈钟贤, 姜永远, 孙秀冬, 周忠祥, 姚凤凤. 光折变聚合物中斩波调制对二波耦合增益系数的增强效应. 物理学报, 2002, 51(7): 1512-1516. doi: 10.7498/aps.51.1512
    [20] 宋峰, 孟凡臻, 丁欣, 张潮波, 杨嘉, 张光寅. 1.54μmEr3+,Yb3+共掺玻璃激光器的速率方程及数值分析. 物理学报, 2002, 51(6): 1233-1238. doi: 10.7498/aps.51.1233
计量
  • 文章访问数:  4425
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-13
  • 修回日期:  2017-05-23
  • 刊出日期:  2017-08-05

/

返回文章
返回