搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于图像信息熵的ptychography轴向距离误差校正

窦健泰 高志山 马骏 袁操今 杨忠明

引用本文:
Citation:

基于图像信息熵的ptychography轴向距离误差校正

窦健泰, 高志山, 马骏, 袁操今, 杨忠明

Correction of axial distance error in ptychography based on image information entropy

Dou Jian-Tai, Gao Zhi-Shan, Ma Jun, Yuan Cao-Jin, Yang Zhong-Ming
PDF
导出引用
  • 在轴向距离参与运算的ptychography算法中,轴向距离误差会使重建图像变模糊并降低图像的分辨率.本文基于菲涅耳衍射理论建立了轴向距离误差模型,根据不同轴向距离误差对重构图像清晰度的影响,提出用图像信息熵确定图像最清晰时的轴向距离,并重建出清晰的ptychography图像.比较了图像能量变化、Tamura系数和图像信息熵这三种图像清晰度评价函数在轴向距离误差校正过程中的分布情况,发现它们均具有单峰性,且峰值确定的轴向距离相同.图像信息熵相比其他两种图像清晰度评价函数具有更高的灵敏性.仿真以及实验均证明了基于图像信息熵的ptychography轴向误差校正的可行性.
    Ptychography provides an extremely robust and highly convergent algorithm to reconstruct the specimen phase with a wide field of view. The resolution and accuracy of ptychography are severely restricted by the uncertainty of the position error that includes the scanning position and axial distance error. In fact, it is difficult to accurately measure the distance between the target plane and entrance pupil of charge-coupled device (CCD) or complementary metal oxide semiconductor, which results in the axial distance error. The axial distance error can blur the reconstructed image, degrade the reconstruction quality and reduce the resolution. In order to analyze the effect of the axial distance error, the model for axial distance error is derived based on the amplitude constraint in CCD and Fresnel diffraction integral. This model indicates that the axial distance error can cause a stretching deformation of the retrieved image, which is similar to the defocusing effect caused by different axial distances in holography. In this paper, we propose a method of correcting the axial distance error by using the image information entropy in an iterative way to obtain the accurate axial distance and retrieve the distinct image. The correction method based on the image information entropy is composed of four parts:the initial calculation, the determination of the direction search, the axial error correction and the reconstruction of the distinct image. The initial calculation part is to ensure that the intensity of the reconstructed object tends to be stable before entering into the other processing parts. The search direction portion is to indicate that the initial axial distance is greater than the actual axial distance, or less than the actual axial distance. The axial error correction section is to calculate the sharpness values of the image at different axial distance, and find the peak position of the sharpness distribution that corresponds to the position of the clearest image. The axial distance can be taken from the peak position. The obtained axial distance is again taken into account in the ptychography algorithm to eliminate the axial distance error and obtain the distinct reconstructed image. In this paper, some simulations are conducted to verify the feasibility of the proposed method. The effect of the axial distance error is analyzed. The image energy variation, the Tamura coefficient and the image information entropy are selected as the image definition evaluation functions in our paper. We compare the distributions of three image definition evaluation functions in the correction process of the axial distance error. It is found that the image information entropy has higher sensitivity than the other image definition evaluation functions. Finally, both simulation and experiment have proved the feasibility of axial distance error correction based on image information entropy.
      通信作者: 马骏, majun@njust.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61575095,61377015,61505080)和中国科协"青年人才托举工程"(批准号:2015QNRC001)资助的课题.
      Corresponding author: Ma Jun, majun@njust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61575095, 61377015, 61505080) and Young Elite Scientist Sponsorship Program by Chinese Association for Science and Technology (Grant No. 2015QNRC001).
    [1]

    Shen C, Tan J, Wei C, Liu Z 2016 Opt. Express 24 16520

    [2]

    Hirose M, Shimomura K, Suzuki A, Burdet N, Takahashi Y 2016 Opt. Express 24 11917

    [3]

    Kim C, Kim Y, Song C 2016 J. Phys.:Condens. Matter 28 493001

    [4]

    Hruszkewycz S O, Cha W, Andrich P, Anderson C P, Ulvestad A, Harder R, Heremans F J 2017 APL Mater. 5 026105

    [5]

    Rodenburg J M, Faulkner H M L 2004 Appl. Phys. Lett. 85 4795

    [6]

    Rodenburg J M, Hurst A C, Cullis A G 2007 Ultramicroscopy 107 227

    [7]

    Maiden A M, Rodenburg J M, Humphry M J 2010 Opt. Lett. 35 2585

    [8]

    Bunk O, Dierolf M, Kynde S 2008 Ultramicroscopy 108 481

    [9]

    Wang Y L, Shi Y S, Li T, Gao Q K, Xiao J, Zhang S G 2013 Acta Phys. Sin. 62 234201 (in Chinese)[王雅丽, 史祎诗, 李拓, 高乾坤, 肖俊, 张三国2013物理学报62 234201]

    [10]

    Wang H Y, Liu C, Pan X C 2014 Chin. Opt. Lett. 12 010501

    [11]

    Wang B S, Gao S M, Wang J C 2013 Acta Opt. Sin. 33 0611001(in Chinese)[王宝升, 高淑梅, 王继成2012光学学报33 0611001]

    [12]

    Liu C, Walther T, Rodenburg J M 2009 Ultramicroscopy 109 1263

    [13]

    He X L, Liu C, Wang J C 2014 Acta Phys. Sin. 63 034208(in Chinese)[何小亮, 刘诚, 王继成2014物理学报63 034208]

    [14]

    Rodenburg J M 2008 Adv. Imag. Elect. Phys. 150 87

    [15]

    Maiden A M, Rodenburg J M 2009 Ultramicroscopy 109 1256

    [16]

    Guizar-Sicairos M, Fienup J R 2008 Opt. Express. 16 7264

    [17]

    Shenfield A, Rodenburg J M 2011 Appl. Phys. 109 124510

    [18]

    Maiden A M, Humphry M J, Sarahan M C, Kraus B, Rodenburg J M 2012 Ultramicroscopy 120 64

    [19]

    Beckers M, Senkbeil T, Gorniak T, Giewekemeyer K, Salditt T, Rosenhahn A 2013 Ultramicroscopy 126 44

    [20]

    Zhang F C, Peterson I, Vila-Comamala J, Diaz A, Berenguer F, Bean R, Chen B, Menzel A K, Robinson I, Rodenburg J M 2013 Opt. Express 21 13592

    [21]

    Sun J S, Chen Q, Zhang Y Z, Zuo C 2016 Opt. Express 7 1336

    [22]

    Shimobaba T, Kakue T, Okada N, Endo Y, Hirayama R, Hiyama D, Ito T 2014 Opt. Commun. 331 189

    [23]

    Liu C, Pan X C, Zhu J Q 2013 Acta Phys. Sin. 62 184204 (in Chinese)[刘诚, 潘兴臣, 朱健强2013物理学报62 184204]

    [24]

    Wang H Y, Liu C, Pan X C, Cheng J, Zhu J Q 2014 Chin. Opt. Lett 12 010501

    [25]

    Wang Y W, Liu X L, Xie H 2006 Opt. Precis. Engineer. 14 1063 (in Chinese)[王义文, 刘献礼, 谢晖2006光学精密工程14 1063]

    [26]

    Zhang L X, Sun H Y, Guo H C 2013 Acta Photon. Sin. 42 605 (in Chinese)[张来线, 孙华燕, 郭惠超2013光子学报42 605]

    [27]

    Zhu Z T, Li S F, Chen H P 2004 Opt. Precis. Engineer. 12 537 (in Chinese)[朱铮涛, 黎绍发, 陈华平2004光学精密工程12 537]

    [28]

    Memmolo P, Distante C, Paturzo M, Finizio A, Ferraro P, Javidi B 2011 Opt. Lett. 201136 1945

  • [1]

    Shen C, Tan J, Wei C, Liu Z 2016 Opt. Express 24 16520

    [2]

    Hirose M, Shimomura K, Suzuki A, Burdet N, Takahashi Y 2016 Opt. Express 24 11917

    [3]

    Kim C, Kim Y, Song C 2016 J. Phys.:Condens. Matter 28 493001

    [4]

    Hruszkewycz S O, Cha W, Andrich P, Anderson C P, Ulvestad A, Harder R, Heremans F J 2017 APL Mater. 5 026105

    [5]

    Rodenburg J M, Faulkner H M L 2004 Appl. Phys. Lett. 85 4795

    [6]

    Rodenburg J M, Hurst A C, Cullis A G 2007 Ultramicroscopy 107 227

    [7]

    Maiden A M, Rodenburg J M, Humphry M J 2010 Opt. Lett. 35 2585

    [8]

    Bunk O, Dierolf M, Kynde S 2008 Ultramicroscopy 108 481

    [9]

    Wang Y L, Shi Y S, Li T, Gao Q K, Xiao J, Zhang S G 2013 Acta Phys. Sin. 62 234201 (in Chinese)[王雅丽, 史祎诗, 李拓, 高乾坤, 肖俊, 张三国2013物理学报62 234201]

    [10]

    Wang H Y, Liu C, Pan X C 2014 Chin. Opt. Lett. 12 010501

    [11]

    Wang B S, Gao S M, Wang J C 2013 Acta Opt. Sin. 33 0611001(in Chinese)[王宝升, 高淑梅, 王继成2012光学学报33 0611001]

    [12]

    Liu C, Walther T, Rodenburg J M 2009 Ultramicroscopy 109 1263

    [13]

    He X L, Liu C, Wang J C 2014 Acta Phys. Sin. 63 034208(in Chinese)[何小亮, 刘诚, 王继成2014物理学报63 034208]

    [14]

    Rodenburg J M 2008 Adv. Imag. Elect. Phys. 150 87

    [15]

    Maiden A M, Rodenburg J M 2009 Ultramicroscopy 109 1256

    [16]

    Guizar-Sicairos M, Fienup J R 2008 Opt. Express. 16 7264

    [17]

    Shenfield A, Rodenburg J M 2011 Appl. Phys. 109 124510

    [18]

    Maiden A M, Humphry M J, Sarahan M C, Kraus B, Rodenburg J M 2012 Ultramicroscopy 120 64

    [19]

    Beckers M, Senkbeil T, Gorniak T, Giewekemeyer K, Salditt T, Rosenhahn A 2013 Ultramicroscopy 126 44

    [20]

    Zhang F C, Peterson I, Vila-Comamala J, Diaz A, Berenguer F, Bean R, Chen B, Menzel A K, Robinson I, Rodenburg J M 2013 Opt. Express 21 13592

    [21]

    Sun J S, Chen Q, Zhang Y Z, Zuo C 2016 Opt. Express 7 1336

    [22]

    Shimobaba T, Kakue T, Okada N, Endo Y, Hirayama R, Hiyama D, Ito T 2014 Opt. Commun. 331 189

    [23]

    Liu C, Pan X C, Zhu J Q 2013 Acta Phys. Sin. 62 184204 (in Chinese)[刘诚, 潘兴臣, 朱健强2013物理学报62 184204]

    [24]

    Wang H Y, Liu C, Pan X C, Cheng J, Zhu J Q 2014 Chin. Opt. Lett 12 010501

    [25]

    Wang Y W, Liu X L, Xie H 2006 Opt. Precis. Engineer. 14 1063 (in Chinese)[王义文, 刘献礼, 谢晖2006光学精密工程14 1063]

    [26]

    Zhang L X, Sun H Y, Guo H C 2013 Acta Photon. Sin. 42 605 (in Chinese)[张来线, 孙华燕, 郭惠超2013光子学报42 605]

    [27]

    Zhu Z T, Li S F, Chen H P 2004 Opt. Precis. Engineer. 12 537 (in Chinese)[朱铮涛, 黎绍发, 陈华平2004光学精密工程12 537]

    [28]

    Memmolo P, Distante C, Paturzo M, Finizio A, Ferraro P, Javidi B 2011 Opt. Lett. 201136 1945

  • [1] 潘新宇, 毕筱雪, 董政, 耿直, 徐晗, 张一, 董宇辉, 张承龙. 叠层相干衍射成像算法发展综述. 物理学报, 2023, 72(5): 054202. doi: 10.7498/aps.72.20221889
    [2] 王大勇, 李兵, 戎路, 赵洁, 王云新, 翟长超. 连续太赫兹波双物距叠层定量相衬成像. 物理学报, 2020, 69(2): 028701. doi: 10.7498/aps.69.20191310
    [3] 王磊, 窦健泰, 马骏, 袁操今, 高志山, 魏聪, 张天宇. 基于叠层衍射成像的二元光学元件检测研究. 物理学报, 2017, 66(9): 094201. doi: 10.7498/aps.66.094201
    [4] 范虹, 韦文瑾, 朱艳春. 基于二维集合经验模式分解的距离正则化水平集磁共振图像分割. 物理学报, 2016, 65(16): 168701. doi: 10.7498/aps.65.168701
    [5] 余伟, 田晓琳, 何小亮, 高淑梅, 刘诚, 朱健强. 部分相干条件下的弱散射样品ptychography iterative engine成像. 物理学报, 2016, 65(18): 184202. doi: 10.7498/aps.65.184202
    [6] 肖俊, 李登宇, 王雅丽, 史祎诗. 并行化叠层成像算法研究. 物理学报, 2016, 65(15): 154203. doi: 10.7498/aps.65.154203
    [7] 潘安, 王东, 史祎诗, 姚保利, 马臻, 韩洋. 多波长同时照明的菲涅耳域非相干叠层衍射成像. 物理学报, 2016, 65(12): 124201. doi: 10.7498/aps.65.124201
    [8] 潘雪梅, 孟祥锋, 杨修伦, 王玉荣, 彭翔, 何文奇, 董国艳, 陈红艺. 基于复振幅场信息复用和RSA算法的非对称多幅图像认证方法. 物理学报, 2015, 64(11): 110701. doi: 10.7498/aps.64.110701
    [9] 王云波, 李公平, 潘小东, 许楠楠. 多种图像采集策略下X射线折射信息的提取研究. 物理学报, 2014, 63(10): 104206. doi: 10.7498/aps.63.104206
    [10] 李先锐, 朱彦丽. DC-DC变换器的信息熵分析. 物理学报, 2014, 63(23): 238401. doi: 10.7498/aps.63.238401
    [11] 黄飞虎, 彭舰, 宁黎苗. 基于信息熵的社交网络观点演化模型. 物理学报, 2014, 63(16): 160501. doi: 10.7498/aps.63.160501
    [12] 王雅丽, 史祎诗, 李拓, 高乾坤, 肖俊, 张三国. 可见光域叠层成像中照明光束的关键参量研究. 物理学报, 2013, 62(6): 064206. doi: 10.7498/aps.62.064206
    [13] 甘甜, 冯少彤, 聂守平, 朱竹青. 基于分块离散小波变换的图像信息隐藏与盲提取算法. 物理学报, 2012, 61(8): 084203. doi: 10.7498/aps.61.084203
    [14] 任洪亮, 丁攀峰, 李小燕. 光镊轴向阱位操控及器件安装误差对径向阱位操控的影响. 物理学报, 2012, 61(21): 210701. doi: 10.7498/aps.61.210701
    [15] 冯爱霞, 龚志强, 黄琰, 王启光. 全球温度场信息熵的时空特征分析. 物理学报, 2011, 60(9): 099204. doi: 10.7498/aps.60.099204
    [16] 郭永峰, 徐伟, 李东喜, 王亮. 准单色噪声驱动的耗散动力系统的信息熵演化. 物理学报, 2010, 59(4): 2235-2239. doi: 10.7498/aps.59.2235
    [17] 张春涛, 马千里, 彭宏. 基于信息熵优化相空间重构参数的混沌时间序列预测. 物理学报, 2010, 59(11): 7623-7629. doi: 10.7498/aps.59.7623
    [18] 徐艳, 董江涛, 王少华. 基于模糊隶属度的图像空间距离修正插值算法. 物理学报, 2010, 59(11): 7535-7539. doi: 10.7498/aps.59.7535
    [19] 杨晓苹, 翟宏琛, 王明伟. 一种应用相息图对灰度图像信息进行隐藏的方法. 物理学报, 2008, 57(2): 847-852. doi: 10.7498/aps.57.847
    [20] 刘小娟, 周并举, 方卯发, 周清平. 双光子过程中任意初态原子的信息熵压缩. 物理学报, 2006, 55(2): 704-711. doi: 10.7498/aps.55.704
计量
  • 文章访问数:  5273
  • PDF下载量:  255
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-26
  • 修回日期:  2017-06-01
  • 刊出日期:  2017-08-05

/

返回文章
返回