搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非晶纤维的制备和力学行为

易军

引用本文:
Citation:

非晶纤维的制备和力学行为

易军

Fabrications and mechanical behaviors of amorphous fibers

Yi Jun
PDF
导出引用
  • 将块体材料制备成微纳米纤维时,其力学性能会得到进一步的提高,甚至具备块体材料所没有的力学行为.非晶态材料可经过熔体拉丝一次性成型而得到所需尺寸的均匀纤维,纤维表面质量好,其制备过程相对简单且节能.由于非晶材料短程有序、长程无序的结构,具备优异的力学性能,所以非晶纤维有着广泛的应用前景和基础研究价值.本文对能制备成非晶纤维且有优异力学性能的材料做了简单介绍,对非晶纤维的制备方法及其成型物理机制、非晶纤维的力学行为及其物理机制进行了综述,最后总结了非晶纤维的制备和力学行为的研究中存在的问题,对非晶纤维的发展前景做了展望.
    Mechanical properties of micro- and nanoscale fibers are superior to their bulk counterparts, and their mechanical behaviors are different from each other. Homogeneous amorphous fibers with smooth surfaces and controllable sizes can be continuously drawn from supercooled liquid. Compared with the preparing of crystalline fibers, the manufacturing of amorphous fibers saves much energy and time. Furthermore, amorphous materials have excellent mechanical properties due to their short-ranged ordered and long-ranged disordered structures. Therefore, amorphous fibers have wide engineering applications and research interest. In this paper we review the fabrication and mechanical behaviors of amorphous fibers with excellent mechanical properties including oxide glass fibers and amorphous alloy fibers.There are continuous and discontinuous oxide glass micro-fibers. Discontinuous oxide glass micro-fibers can be fabricated by techniques in which a thin thread of melt flowing from the bottom of a container is broken into segments. Continuous oxide micro-fibers can be fabricated by techniques in which a filament of supercooled liquid is drawn from melt. However, oxide glass nano-fibers can be fabricated by chemical vapor deposition, laser ablation, sol-gel, and thermal evaporation methods. Fabrication techniques of amorphous alloy fibers are very different from those of oxide glass fibers. These techniques adopt in-rotating-water spinning method, melt-extraction method, Taylor method, nanomoulding method, fast drawing method, melt drawing method, and gas atomization method.Microscale oxide glass fiber has a facture strength as high as 6 GPa. The fracture strength of nanoscale oxide glass fiber can reach 26 GPa which is close to the theoretical strength of 30 GPa. On the other hand, the plasticity of microscale amorphous alloy fibers is mediated by shear banding. The shear band spacing decreases with reducing sample size in bending. However, there is no tensile plasticity in microscale amorphous alloy fibers. When the sample size is smaller than the size of shear band core (500 nm), inhomogeneous plastic deformation transforms into homogeneous plastic deformation. The tensile plasticity of amorphous alloy is significantly improved. The homogeneous plastic deformation is mediated by catalyzed shear transformation. The catalyzed shear transformation may be the origin of hardening behaviors of nanoscale amorphous alloy fibers.Fianlly, we summary the unsolved problems in the fabrications and mechanical behaviors of amorphous fibers, and discuss the prospect of amorphous fibers.
      通信作者: 易军, jxy305@gmail.com
    • 基金项目: 国家重点基础研究发展计划(批准号:2016YFB0700203)和国家自然科学基金(批准号:51501106)资助的课题.
      Corresponding author: Yi Jun, jxy305@gmail.com
    • Funds: Project supported by the National Basic Research Program of Chian (Grant No. 2016YFB0700203) and the National Natural Science Foundation of China (Grant No. 51501106).
    [1]

    Wallenberger F T, Bingham P A 2010 Fiberglass and Glass Technology (New York: Springer)

    [2]

    Sun B A, Wang W H 2015 Prog. Mater. Sci. 74 211

    [3]

    Trexler M M, Thadhani N N 2010 Prog. Mater. Sci. 55 759

    [4]

    Kapany N S, Simms R J 1965 Infrared Phys. 5 69

    [5]

    Bunge C A, Gries T, Beckers M 2017 Polymer Optical Fibres (Cambridge: Woodhead Publishing)

    [6]

    Klement W, Willens R H, Duwez P O L 1960 Nature 187 869

    [7]

    Chen H S, Turnbull D 1968 J. Chem. Phys. 48 2560

    [8]

    Kawamura Y, Shibata T, Inoue A, Masumoto T 1997 Scripta Mater. 37 431

    [9]

    Nishiyama N, Inoue A 1999 Mater. Trans. 40 64

    [10]

    Kumar G, Tang H X, Schroers J 2009 Nature 457 868

    [11]

    Nakayama K S, Yokoyama Y, Ono T, Chen M W, Akiyama K, Sakurai T, Inoue A 2010 Adv. Mater. 22 872

    [12]

    Yi J, Xia X X, Zhao D Q, Pan M X, Bai H Y, Wang W H 2010 Adv. Eng. Mater. 12 1117

    [13]

    Macfarlane A, Martin G 2002 Glass: A World History (London: The University of Chicago Press) p4

    [14]

    Macfarlane A, Martin G 2004 Science 305 1407

    [15]

    Peng S 2013 Outline of New Glass (Beijing: Higher Education Press) (in Chinese) [彭寿 2013 新玻璃概论(北京: 高等教育出版社)]

    [16]

    Huang D, McKenna G B 2001 J. Chem. Phys. 114 5621

    [17]

    Angell C A, Ngai K L, McKenna G B, McMillan P F, Martin S W 2000 J. Appl. Phys. 88 3113

    [18]

    Yin H F, Wei J 2015 Composite Materials (Beijing: Metallurgical Industry Press) p24 (in Chinese) [尹洪峰, 魏剑 2015复合材料 (北京: 冶金工业出版社) 第24页]

    [19]

    Shelby J E 2005 Introduction to Glass Science and Technology (Cambridge, UK: RS.C) p252

    [20]

    Kamiya K, Yoko T 1986 J. Mater. Sci. 21 842

    [21]

    Yu D P, Hang Q L, Ding Y, Zhang H Z, Bai Z G, Wang J J, Zou Y H, Qian W, Xiong G C, Feng S Q 1998 Appl. Phys. Lett. 73 3076

    [22]

    Zhang M, Bando Y, Wada K, Kurashima K 1999 J. Mater. Sci. Lett. 18 1911

    [23]

    Liang C H, Zhang L D, Meng G W, Wang Y W, Chu Z Q 2000 J. Non-Cryst. Solids 277 63

    [24]

    Liu Z Q, Xie S S, Sun L F, Tang D S, Zhou W Y, Wang C Y, Liu W, Li Y B, Zou X P, Wang G 2012 J. Mater. Res. 16 683

    [25]

    Brambilla G, Payne D N 2009 Nano Lett. 9 831

    [26]

    Inoue A, Hagiwara M, Masumoto T 1982 J. Mater. Sci. 17 580

    [27]

    Chiriac H, óvári T A 1996 Prog. Mater. Sci. 40 333

    [28]

    Rudkowski P, Rudkowska G, Strom-Olsen J O 1991 Mater. Sci. Eng. A 133 158

    [29]

    Zberg B, Arata E R, Uggowitzer P J, Löffler J F 2009 Acta Mater. 57 3223

    [30]

    Nakayama K S, Yokoyama Y, Xie G, Zhang Q S, Chen M W, Sakurai T, Inoue A 2008 Nano Lett. 8 516

    [31]

    Magagnosc D J, Ehrbar R, Kumar G, He M R, Schroers J, Gianola D S 2013 Sci. Rep. 3 1096

    [32]

    Schroers J, Masuhr A, Johnson W L, Busch R 1999 Phys. Rev. B 60 11855

    [33]

    Nakayama K S, Yokoyama Y, Wada T, Chen N, Inoue A 2012 Nano Lett. 12 2404

    [34]

    Debenedetti P G, Stillinger F H 2001 Nature 410 259

    [35]

    Böhmer R, Ngai K L, Angell C A, Plazek D J 1993 J. Chem. Phys. 99 4201

    [36]

    Petit J, Rivière D, Kellay H, Delville J P 2012 Proc. Natl. Acad. Sci. USA 109 18327

    [37]

    Thomas H C 2000 Mechanical Behavior of Materials (2nd Ed.) (Boston: McGraw Hill)

    [38]

    Argon A S 1979 Acta Metall. 27 47

    [39]

    Kumar G, Desai A, Schroers J 2011 Adv. Mater. 23 461

    [40]

    Greer J R, De Hosson J T M 2011 Prog. Mater. Sci. 56 654

    [41]

    Liao W, Hu J, Zhang Y 2012 Intermetallics 20 82

    [42]

    Conner R D, Johnson W L, Paton N E, Nix W D 2003 J. Appl. Phys. 94 904

    [43]

    Wang H, Qin F X, Xing D W, Cao F Y, Wang X D, Peng H X, Sun J F 2012 Acta Mater. 60 5425

    [44]

    Yi J, Wang W H, Lewandowski J J 2015 Acta Mater. 87 1

    [45]

    Thamburaja P 2011 J. Mech. Phys. Solids 59 1552

    [46]

    Schuh C A, Lund A C, Nieh T G 2004 Acta Mater. 52 5879

    [47]

    Argon A S, Shi L T 1983 Acta Metall. 31 499

    [48]

    Johnson W L, Samwer K 2005 Phys. Rev. Lett. 95 195501

    [49]

    Wang C C, Ding J, Cheng Y Q, Wan J C, Tian L, Sun J, Shan Z W, Li J, Ma E 2012 Acta Mater. 60 5370

    [50]

    Megusar J, Argon A S, Grant N J 1979 Mater. Sci. Eng. 38 63

    [51]

    Schuster B E, Wei Q, Hufnagel T C, Ramesh K T 2008 Acta Mater. 56 5091

    [52]

    Tönnies D, Maaß R, Volkert C A 2014 Adv. Mater. 26 5715

    [53]

    Jang D, Greer J R 2010 Nat. Mater. 9 215

    [54]

    Hasan M, Kumar G 2017 Nanoscale 9 3261

    [55]

    Mattern N, Hermann H, Roth S, Sakowski J, Macht M P, Jovari P, Jiang J 2003 Appl. Phys. Lett. 82 2589

    [56]

    Rosales-Sosa G A, Masuno A, Higo Y, Inoue H 2016 Sci. Rep. 6 23620

    [57]

    Ni H, Li X, Gao H 2006 Appl. Phys. Lett. 88 0431083

    [58]

    Zheng K, Wang C, Cheng Y Q, Yue Y, Han X, Zhang Z, Shan Z, Mao S X, Ye M, Yin Y, Ma E 2010 Nat. Commun. 1 24

    [59]

    Gao H, Ji B, Jäger I L, Arzt E, Fratzl P 2003 Proc. Natl. Acad. Sci. USA 100 5597

  • [1]

    Wallenberger F T, Bingham P A 2010 Fiberglass and Glass Technology (New York: Springer)

    [2]

    Sun B A, Wang W H 2015 Prog. Mater. Sci. 74 211

    [3]

    Trexler M M, Thadhani N N 2010 Prog. Mater. Sci. 55 759

    [4]

    Kapany N S, Simms R J 1965 Infrared Phys. 5 69

    [5]

    Bunge C A, Gries T, Beckers M 2017 Polymer Optical Fibres (Cambridge: Woodhead Publishing)

    [6]

    Klement W, Willens R H, Duwez P O L 1960 Nature 187 869

    [7]

    Chen H S, Turnbull D 1968 J. Chem. Phys. 48 2560

    [8]

    Kawamura Y, Shibata T, Inoue A, Masumoto T 1997 Scripta Mater. 37 431

    [9]

    Nishiyama N, Inoue A 1999 Mater. Trans. 40 64

    [10]

    Kumar G, Tang H X, Schroers J 2009 Nature 457 868

    [11]

    Nakayama K S, Yokoyama Y, Ono T, Chen M W, Akiyama K, Sakurai T, Inoue A 2010 Adv. Mater. 22 872

    [12]

    Yi J, Xia X X, Zhao D Q, Pan M X, Bai H Y, Wang W H 2010 Adv. Eng. Mater. 12 1117

    [13]

    Macfarlane A, Martin G 2002 Glass: A World History (London: The University of Chicago Press) p4

    [14]

    Macfarlane A, Martin G 2004 Science 305 1407

    [15]

    Peng S 2013 Outline of New Glass (Beijing: Higher Education Press) (in Chinese) [彭寿 2013 新玻璃概论(北京: 高等教育出版社)]

    [16]

    Huang D, McKenna G B 2001 J. Chem. Phys. 114 5621

    [17]

    Angell C A, Ngai K L, McKenna G B, McMillan P F, Martin S W 2000 J. Appl. Phys. 88 3113

    [18]

    Yin H F, Wei J 2015 Composite Materials (Beijing: Metallurgical Industry Press) p24 (in Chinese) [尹洪峰, 魏剑 2015复合材料 (北京: 冶金工业出版社) 第24页]

    [19]

    Shelby J E 2005 Introduction to Glass Science and Technology (Cambridge, UK: RS.C) p252

    [20]

    Kamiya K, Yoko T 1986 J. Mater. Sci. 21 842

    [21]

    Yu D P, Hang Q L, Ding Y, Zhang H Z, Bai Z G, Wang J J, Zou Y H, Qian W, Xiong G C, Feng S Q 1998 Appl. Phys. Lett. 73 3076

    [22]

    Zhang M, Bando Y, Wada K, Kurashima K 1999 J. Mater. Sci. Lett. 18 1911

    [23]

    Liang C H, Zhang L D, Meng G W, Wang Y W, Chu Z Q 2000 J. Non-Cryst. Solids 277 63

    [24]

    Liu Z Q, Xie S S, Sun L F, Tang D S, Zhou W Y, Wang C Y, Liu W, Li Y B, Zou X P, Wang G 2012 J. Mater. Res. 16 683

    [25]

    Brambilla G, Payne D N 2009 Nano Lett. 9 831

    [26]

    Inoue A, Hagiwara M, Masumoto T 1982 J. Mater. Sci. 17 580

    [27]

    Chiriac H, óvári T A 1996 Prog. Mater. Sci. 40 333

    [28]

    Rudkowski P, Rudkowska G, Strom-Olsen J O 1991 Mater. Sci. Eng. A 133 158

    [29]

    Zberg B, Arata E R, Uggowitzer P J, Löffler J F 2009 Acta Mater. 57 3223

    [30]

    Nakayama K S, Yokoyama Y, Xie G, Zhang Q S, Chen M W, Sakurai T, Inoue A 2008 Nano Lett. 8 516

    [31]

    Magagnosc D J, Ehrbar R, Kumar G, He M R, Schroers J, Gianola D S 2013 Sci. Rep. 3 1096

    [32]

    Schroers J, Masuhr A, Johnson W L, Busch R 1999 Phys. Rev. B 60 11855

    [33]

    Nakayama K S, Yokoyama Y, Wada T, Chen N, Inoue A 2012 Nano Lett. 12 2404

    [34]

    Debenedetti P G, Stillinger F H 2001 Nature 410 259

    [35]

    Böhmer R, Ngai K L, Angell C A, Plazek D J 1993 J. Chem. Phys. 99 4201

    [36]

    Petit J, Rivière D, Kellay H, Delville J P 2012 Proc. Natl. Acad. Sci. USA 109 18327

    [37]

    Thomas H C 2000 Mechanical Behavior of Materials (2nd Ed.) (Boston: McGraw Hill)

    [38]

    Argon A S 1979 Acta Metall. 27 47

    [39]

    Kumar G, Desai A, Schroers J 2011 Adv. Mater. 23 461

    [40]

    Greer J R, De Hosson J T M 2011 Prog. Mater. Sci. 56 654

    [41]

    Liao W, Hu J, Zhang Y 2012 Intermetallics 20 82

    [42]

    Conner R D, Johnson W L, Paton N E, Nix W D 2003 J. Appl. Phys. 94 904

    [43]

    Wang H, Qin F X, Xing D W, Cao F Y, Wang X D, Peng H X, Sun J F 2012 Acta Mater. 60 5425

    [44]

    Yi J, Wang W H, Lewandowski J J 2015 Acta Mater. 87 1

    [45]

    Thamburaja P 2011 J. Mech. Phys. Solids 59 1552

    [46]

    Schuh C A, Lund A C, Nieh T G 2004 Acta Mater. 52 5879

    [47]

    Argon A S, Shi L T 1983 Acta Metall. 31 499

    [48]

    Johnson W L, Samwer K 2005 Phys. Rev. Lett. 95 195501

    [49]

    Wang C C, Ding J, Cheng Y Q, Wan J C, Tian L, Sun J, Shan Z W, Li J, Ma E 2012 Acta Mater. 60 5370

    [50]

    Megusar J, Argon A S, Grant N J 1979 Mater. Sci. Eng. 38 63

    [51]

    Schuster B E, Wei Q, Hufnagel T C, Ramesh K T 2008 Acta Mater. 56 5091

    [52]

    Tönnies D, Maaß R, Volkert C A 2014 Adv. Mater. 26 5715

    [53]

    Jang D, Greer J R 2010 Nat. Mater. 9 215

    [54]

    Hasan M, Kumar G 2017 Nanoscale 9 3261

    [55]

    Mattern N, Hermann H, Roth S, Sakowski J, Macht M P, Jovari P, Jiang J 2003 Appl. Phys. Lett. 82 2589

    [56]

    Rosales-Sosa G A, Masuno A, Higo Y, Inoue H 2016 Sci. Rep. 6 23620

    [57]

    Ni H, Li X, Gao H 2006 Appl. Phys. Lett. 88 0431083

    [58]

    Zheng K, Wang C, Cheng Y Q, Yue Y, Han X, Zhang Z, Shan Z, Mao S X, Ye M, Yin Y, Ma E 2010 Nat. Commun. 1 24

    [59]

    Gao H, Ji B, Jäger I L, Arzt E, Fratzl P 2003 Proc. Natl. Acad. Sci. USA 100 5597

  • [1] 陈晶晶, 邱小林, 李柯, 周丹, 袁军军. 纳米晶CoNiCrFeMn高熵合金力学性能的原子尺度分析. 物理学报, 2022, 71(19): 199601. doi: 10.7498/aps.71.20220733
    [2] 辛勇, 包宏伟, 孙志鹏, 张吉斌, 刘仕超, 郭子萱, 王浩煜, 马飞, 李垣明. U1–xThxO2混合燃料力学性能的分子动力学模拟. 物理学报, 2021, 70(12): 122801. doi: 10.7498/aps.70.20202239
    [3] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [4] 邵宇飞, 孟凡顺, 李久会, 赵星. 分子动力学模拟研究孪晶界对单层二硫化钼拉伸行为的影响. 物理学报, 2019, 68(21): 216201. doi: 10.7498/aps.68.20182125
    [5] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟. 物理学报, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [6] 卞西磊, 王刚. 非晶合金的离子辐照效应. 物理学报, 2017, 66(17): 178101. doi: 10.7498/aps.66.178101
    [7] 王海燕, 胡前库, 杨文朋, 李旭升. 金属元素掺杂对TiAl合金力学性能的影响. 物理学报, 2016, 65(7): 077101. doi: 10.7498/aps.65.077101
    [8] 陈华, 李保卫, 赵鸣, 张雪峰, 贾晓林, 杜永胜. La3+存在形式对白云鄂博稀选尾矿微晶玻璃性能的影响. 物理学报, 2015, 64(19): 196201. doi: 10.7498/aps.64.196201
    [9] 刘雪梅, 刘国权, 李定朋, 王海滨, 宋晓艳. 粗晶和纳米晶Sm3Co合金的制备及其性能研究. 物理学报, 2014, 63(9): 098102. doi: 10.7498/aps.63.098102
    [10] 马冰洋, 张安明, 尚海龙, 孙士阳, 李戈扬. 共溅射Al-Zr合金薄膜的非晶化及其力学性能. 物理学报, 2014, 63(13): 136801. doi: 10.7498/aps.63.136801
    [11] 杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬. 磁控溅射(Ti, N)/Al纳米复合薄膜的微结构和力学性能. 物理学报, 2013, 62(3): 036801. doi: 10.7498/aps.62.036801
    [12] 喻利花, 马冰洋, 曹峻, 许俊华. (Zr,V)N复合膜的结构、力学性能及摩擦性能研究. 物理学报, 2013, 62(7): 076202. doi: 10.7498/aps.62.076202
    [13] 王颖, 卢铁城, 王跃忠, 岳顺利, 齐建起, 潘磊. 虚晶近似法研究AlN-Al2O3固溶体系的力学性能和电子结构. 物理学报, 2012, 61(16): 167101. doi: 10.7498/aps.61.167101
    [14] 罗庆洪, 陆永浩, 娄艳芝. Ti-B-C-N纳米复合薄膜结构及力学性能研究. 物理学报, 2011, 60(8): 086802. doi: 10.7498/aps.60.086802
    [15] 罗庆洪, 娄艳芝, 赵振业, 杨会生. 退火对AlTiN多层薄膜结构及力学性能影响. 物理学报, 2011, 60(6): 066201. doi: 10.7498/aps.60.066201
    [16] 余伟阳, 唐壁玉, 彭立明, 丁文江. α-Mg3Sb2的电子结构和力学性能. 物理学报, 2009, 58(13): 216-S223. doi: 10.7498/aps.58.216
    [17] 徐锦锋, 范于芳, 陈娓, 翟秋亚. 快速凝固Cu-Pb过偏晶合金的性能表征. 物理学报, 2009, 58(1): 644-649. doi: 10.7498/aps.58.644
    [18] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能. 物理学报, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [19] 魏 仑, 梅芳华, 邵 楠, 董云杉, 李戈扬. TiN/TiB2异结构纳米多层膜的共格生长与力学性能. 物理学报, 2005, 54(10): 4846-4851. doi: 10.7498/aps.54.4846
    [20] 荣传兵, 赵玉华, 徐民, 赵恒和, 程力智, 何开元. 具有宽过冷液相区的Fe62Co8-x(Cr,Mo)xNb4Zr6B20非晶态合金的热稳定性与磁性. 物理学报, 2001, 50(11): 2235-2240. doi: 10.7498/aps.50.2235
计量
  • 文章访问数:  5123
  • PDF下载量:  361
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-31
  • 修回日期:  2017-07-05
  • 刊出日期:  2017-09-05

/

返回文章
返回