搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

随活性剂浓度变化的分离压对垂直液膜排液过程的影响

叶学民 杨少东 李春曦

引用本文:
Citation:

随活性剂浓度变化的分离压对垂直液膜排液过程的影响

叶学民, 杨少东, 李春曦

Effect of concentration-dependent disjoining pressure on drainage process of vertical liquid film

Ye Xue-Min, Yang Shao-Dong, Li Chun-Xi
PDF
导出引用
  • 针对含不溶性活性剂的垂直液膜排液过程,基于文献实验结果进一步完善了受活性剂浓度影响的分离压(disjoining pressure)模型,应用润滑理论建立了液膜厚度、活性剂浓度和液膜表面速度的演化方程组,通过数值计算分析了在不同分离压作用下含不溶性活性剂液膜的演化特征.结果表明,垂直液膜的排液过程通常经历两个阶段:首先是厚膜阶段,此时重力对排液过程起主导作用.在随后的薄膜阶段,毛细作用和分离压作用影响逐渐增大,其中分离压将控制液膜的演化历程.分离压对垂直液膜排液过程的影响与活性剂类型及活性剂浓度与静电作用力的关联强度密切相关.当分离压与活性剂浓度正相关时,随斥力关联系数α增大,液膜的排液和变薄过程得以减缓,由此增强了液膜稳定性;当分离压与活性剂浓度负相关时,随斥力关联系数α绝对值增大,液膜排液过程加速,由此加大液膜失稳的风险.
    For the drainage under the gravity of a vertical foam film containing insoluble surfactant, an improved concentration-dependent disjoining pressure model is formulated based on the published experimental results. The lubrication theory is used to establish the evolution equations of the film thickness, the surface concentration of insoluble surfactant, and the surface velocity, and the evolution characteristics of the film under different disjoining pressures are simulated numerically. The results show that the drainage process of a vertical liquid film generally undergoes two stages:the first stage is the thick film stage and the gravity plays a leading role in the drainage process; the subsequent stage is the thin film stage, the effects of capillary pressure and disjoining pressure increase gradually, and the disjoining pressure dominates the evolution of the film. The disjoining pressure effect is closely related to surfactant type and the correlation strength between the surfactant concentration and electrostatic repulsion force of disjoining pressure. For the ionic surfactant, electrostatic repulsion force increases with the increase of the surfactant concentration, but it is opposite for the nonionic surfactant. It is likely that the free hydroxide ions, which are considered to render the surface negatively charged, are partly adsorbed by the nonionic surfactant. So the surface charge of the foam film decreases as the concentration of the nonionic surfactant increases, resulting in a decrease in electrostatic repulsion. Therefore, some ionic surfactants can improve the stability of liquid film drainage and slow down the drainage process, while the effects of some nonionic surfactants are opposite. When the disjoining pressure is positively correlated with surfactant concentration, with the increase of correlation strength coefficient α, the thinning and drainaging processes of the film tend to slow down, hence the stability of the film is enhanced. When the disjoining pressure is negatively correlated with surfactant concentration, with the increase of the absolute value of α, the drainage process of the film is accelerated and the risk of film rupture is augmented. The results obtained in this paper are consistent with some of the experimental results, indicating that the concentration-dependent disjoining pressure is indeed an important factor in maintaining the stability of foam film containing some certain anionic or nonionic surfactants. The improved concentration-dependent disjoining pressure model established in this paper could not explain the phenomena of parts of cationic nor non-ionic surfactant film in drainage experiments. It can be inferred that the structure of surfactant molecule, the more detailed disjoining pressure model and the coupling of the disjoining pressure and surface elasticity should be considered in the future work.
      通信作者: 李春曦, leechunxi@163.com
    • 基金项目: 国家自然科学基金(批准号:11202079)和河北省自然科学基金(批准号:A2015502058)资助的课题.
      Corresponding author: Li Chun-Xi, leechunxi@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11202079) and the Natural Science Foundation of Hebei Province, China (Grant No. A2015502058).
    [1]

    Li G S 2013 Ph. D. Dissertation (Xuzhou:China University of Miningand Technology) (in Chinese)[李国胜2013博士学位论文] (徐州:中国矿业大学)

    [2]

    Liang M Q, Yin H Y, Feng Y J 2016 Acta Phys. Chim. Sin. 32 2652(in Chinese)[梁梅清, 殷鸿尧, 冯玉军2016物理化学学报 32 2652]

    [3]

    Wang J, Nguyen A V, Farrokhpay S 2016 Adv. Colloid Interfac. 228 55

    [4]

    Du D X, Zhang N, Sun R, Wang C C, Zhang J, Li Y G 2016 CIESC J. 67 181(in Chinese)[杜东兴, 张娜, 孙芮, 王程程, 张健, 李莺歌2016化工学报 67 181]

    [5]

    Mysels K J, Shinoda K, Frankel S 1959 Soap Films:Studies of Their Thinning and a Bibilography (New York:Pergammon) p116

    [6]

    Bhakta A, Ruckenstein E 1997 Adv. Colloid Interfac. 70 1

    [7]

    Tabakova S S, Danov K D 2009 J. Colloid Interface Sci. 336 273

    [8]

    Manev E D, Pugh R J 1991 Langmuir 7 2253

    [9]

    Carey E, Stubenrauch C 2010 J. Colloid Interface Sci. 343 314

    [10]

    Schwartz L W, Roy R V 1999 J. Colloid Interface Sci. 218 309

    [11]

    Naire S, Braun R J, Snow S A 2000 J. Colloid Interface Sci. 230 91

    [12]

    Naire S, Braun R J, Snow S A 2001 Phys. Fluids 13 2492

    [13]

    Braun R J, Snow S A, Naire S 2002 J. Eng. Math. 43 281

    [14]

    Naire S, Braun R J, Snow S A 2004 J. Comput. Appl. Math. 166 385

    [15]

    Sett S, Sinha-Ray S, Yarin A L 2013 Langmuir 29 4934

    [16]

    Saulnier L, Champougny L, Bastien G, Restagno F, Langevin D, Rio E 2014 Soft Matter 10 2899

    [17]

    Saulnier L, Boos J, Stubenrauch C, Rio E 2014 Soft Matter 10 7117

    [18]

    De Wit A, Gallez D, Christov C I 1994 Phys. Fluids 6 3256

    [19]

    Zhao Y P 2012 Physical Mechanics of Surface and Interface (Beijing:Science Press) pp185, 186(in Chinese)[赵亚溥2012表面与界面物理力学(北京:科学出版社)第185, 186页]

    [20]

    Li C X, Pei J J, Ye X M 2013 Acta Phys. Sin. 62 214704(in Chinese)[李春曦, 裴建军, 叶学民2013物理学报 62 214704]

    [21]

    Claesson P M, Kjellin M, Rojas O J, Stubenrauch C 2006 Phys. Chem. Chem. Phys. 8 5501

    [22]

    Moulton D E, Lega J 2013 Eur. J. Appl. Math. 24 887

    [23]

    Moulton D E, Lega J 2009 Physica D 238 2153

    [24]

    Sakata E K, Berg J C 1972 J. Colloid Interface Sci. 40 99

    [25]

    Ye X M, Jiang K, Li C X 2013 CIESC J. 64 3581(in Chinese)[叶学民, 姜凯, 李春曦2013化工学报 64 3581]

    [26]

    Bergeron V 1997 Langmuir 13 3474

    [27]

    Bykov A G, Lin S Y, Loglio G 2010 Colloids Surf. A:Physicochem. Eng. Asp. 354 382

  • [1]

    Li G S 2013 Ph. D. Dissertation (Xuzhou:China University of Miningand Technology) (in Chinese)[李国胜2013博士学位论文] (徐州:中国矿业大学)

    [2]

    Liang M Q, Yin H Y, Feng Y J 2016 Acta Phys. Chim. Sin. 32 2652(in Chinese)[梁梅清, 殷鸿尧, 冯玉军2016物理化学学报 32 2652]

    [3]

    Wang J, Nguyen A V, Farrokhpay S 2016 Adv. Colloid Interfac. 228 55

    [4]

    Du D X, Zhang N, Sun R, Wang C C, Zhang J, Li Y G 2016 CIESC J. 67 181(in Chinese)[杜东兴, 张娜, 孙芮, 王程程, 张健, 李莺歌2016化工学报 67 181]

    [5]

    Mysels K J, Shinoda K, Frankel S 1959 Soap Films:Studies of Their Thinning and a Bibilography (New York:Pergammon) p116

    [6]

    Bhakta A, Ruckenstein E 1997 Adv. Colloid Interfac. 70 1

    [7]

    Tabakova S S, Danov K D 2009 J. Colloid Interface Sci. 336 273

    [8]

    Manev E D, Pugh R J 1991 Langmuir 7 2253

    [9]

    Carey E, Stubenrauch C 2010 J. Colloid Interface Sci. 343 314

    [10]

    Schwartz L W, Roy R V 1999 J. Colloid Interface Sci. 218 309

    [11]

    Naire S, Braun R J, Snow S A 2000 J. Colloid Interface Sci. 230 91

    [12]

    Naire S, Braun R J, Snow S A 2001 Phys. Fluids 13 2492

    [13]

    Braun R J, Snow S A, Naire S 2002 J. Eng. Math. 43 281

    [14]

    Naire S, Braun R J, Snow S A 2004 J. Comput. Appl. Math. 166 385

    [15]

    Sett S, Sinha-Ray S, Yarin A L 2013 Langmuir 29 4934

    [16]

    Saulnier L, Champougny L, Bastien G, Restagno F, Langevin D, Rio E 2014 Soft Matter 10 2899

    [17]

    Saulnier L, Boos J, Stubenrauch C, Rio E 2014 Soft Matter 10 7117

    [18]

    De Wit A, Gallez D, Christov C I 1994 Phys. Fluids 6 3256

    [19]

    Zhao Y P 2012 Physical Mechanics of Surface and Interface (Beijing:Science Press) pp185, 186(in Chinese)[赵亚溥2012表面与界面物理力学(北京:科学出版社)第185, 186页]

    [20]

    Li C X, Pei J J, Ye X M 2013 Acta Phys. Sin. 62 214704(in Chinese)[李春曦, 裴建军, 叶学民2013物理学报 62 214704]

    [21]

    Claesson P M, Kjellin M, Rojas O J, Stubenrauch C 2006 Phys. Chem. Chem. Phys. 8 5501

    [22]

    Moulton D E, Lega J 2013 Eur. J. Appl. Math. 24 887

    [23]

    Moulton D E, Lega J 2009 Physica D 238 2153

    [24]

    Sakata E K, Berg J C 1972 J. Colloid Interface Sci. 40 99

    [25]

    Ye X M, Jiang K, Li C X 2013 CIESC J. 64 3581(in Chinese)[叶学民, 姜凯, 李春曦2013化工学报 64 3581]

    [26]

    Bergeron V 1997 Langmuir 13 3474

    [27]

    Bykov A G, Lin S Y, Loglio G 2010 Colloids Surf. A:Physicochem. Eng. Asp. 354 382

  • [1] 王晶, 焦阳, 田文得, 陈康. 低惯性与高惯性活性粒子混合体系中的相分离现象. 物理学报, 2023, 72(19): 190501. doi: 10.7498/aps.72.20230792
    [2] 唐修行, 陈泓樾, 王婧婧, 王志军, 臧渡洋. 表面活性剂液滴过渡沸腾的Marangoni效应与二次液滴形成. 物理学报, 2023, 72(19): 196801. doi: 10.7498/aps.72.20230919
    [3] 廖晶晶, 蔺福军. 混合手征活性粒子在时间延迟反馈下的扩散和分离. 物理学报, 2020, 69(22): 220501. doi: 10.7498/aps.69.20200505
    [4] 杨颖, 宋俊杰, 万明威, 高靓辉, 方维海. 分子层次的金纳米棒-表面活性剂-磷脂自组装复合体形貌. 物理学报, 2020, 69(24): 248701. doi: 10.7498/aps.69.20200979
    [5] 张旋, 张天赐, 葛际江, 蒋平, 张贵才. 表面活性剂对气-液界面纳米颗粒吸附规律的影响. 物理学报, 2020, 69(2): 026801. doi: 10.7498/aps.69.20190756
    [6] 李春曦, 施智贤, 庄立宇, 叶学民. 活性剂对表面声波作用下薄液膜铺展的影响. 物理学报, 2019, 68(21): 214703. doi: 10.7498/aps.68.20190791
    [7] 叶学民, 李明兰, 张湘珊, 李春曦. 表面弹性对含可溶性活性剂垂直液膜排液的影响. 物理学报, 2018, 67(21): 214703. doi: 10.7498/aps.67.20181020
    [8] 叶学民, 李明兰, 张湘珊, 李春曦. 表面弹性和分离压耦合作用下的垂直液膜排液过程. 物理学报, 2018, 67(16): 164701. doi: 10.7498/aps.67.20180349
    [9] 叶学民, 杨少东, 李春曦. 分离压和表面黏度的协同作用对液膜排液过程的影响. 物理学报, 2017, 66(19): 194701. doi: 10.7498/aps.66.194701
    [10] 李春曦, 陈朋强, 叶学民. 含活性剂液滴在倾斜粗糙壁面上的铺展稳定性. 物理学报, 2015, 64(1): 014702. doi: 10.7498/aps.64.014702
    [11] 李春曦, 陈朋强, 叶学民. 连续凹槽基底对含非溶性活性剂薄液膜流动特性的影响. 物理学报, 2014, 63(22): 224703. doi: 10.7498/aps.63.224703
    [12] 王辉, 蔺家骏, 何锦强, 廖永力, 李盛涛. 沉淀剂对ZnO压敏陶瓷缺陷结构和电气性能的影响. 物理学报, 2013, 62(22): 226103. doi: 10.7498/aps.62.226103
    [13] 李春曦, 裴建军, 叶学民. 倾斜粗糙壁面上含不溶性活性剂溶液的动力学特性. 物理学报, 2013, 62(21): 214704. doi: 10.7498/aps.62.214704
    [14] 李春曦, 裴建军, 叶学民. 波纹基底上含不溶性活性剂液滴的铺展稳定性. 物理学报, 2013, 62(17): 174702. doi: 10.7498/aps.62.174702
    [15] 李春曦, 姜凯, 叶学民. 含活性剂液膜去润湿演化的稳定性特征. 物理学报, 2013, 62(23): 234702. doi: 10.7498/aps.62.234702
    [16] 李尊懋, 熊庄, 代丽丽. 几何活性原子态的计算. 物理学报, 2010, 59(11): 7824-7829. doi: 10.7498/aps.59.7824
    [17] 王岩松, 王文全, 袁 洲, 张立功, 徐世峰. 热固化剂浓度对SiCN陶瓷压阻效应的影响. 物理学报, 2008, 57(10): 6540-6544. doi: 10.7498/aps.57.6540
    [18] 邓茂林, 洪明潮, 朱位秋, 汪元美. 活性布朗粒子运动的稳态解. 物理学报, 2004, 53(7): 2029-2034. doi: 10.7498/aps.53.2029
    [19] 夏钟福, 马珊珊, 朱伽倩, 邱勋林, 张冶文, Reimund Gerhard-Multhaupt, Wolfgang Kuenstler. 聚四氟乙烯多孔膜的压电活性及其稳定性. 物理学报, 2003, 52(8): 2075-2080. doi: 10.7498/aps.52.2075
    [20] 都有为, 陆怀先, 王挺祥, 王亚旗. 界面活性剂对Fe3O4磁性与穆斯堡尔谱的影响. 物理学报, 1982, 31(10): 1417-1422. doi: 10.7498/aps.31.1417
计量
  • 文章访问数:  4085
  • PDF下载量:  132
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-03
  • 修回日期:  2017-05-10
  • 刊出日期:  2017-09-05

/

返回文章
返回