搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用纳米球提高红外波长上转换探测器效率

刘顺瑞 聂照庭 张明磊 王丽 冷雁冰 孙艳军

引用本文:
Citation:

利用纳米球提高红外波长上转换探测器效率

刘顺瑞, 聂照庭, 张明磊, 王丽, 冷雁冰, 孙艳军

Improvement in the efficiency of up-conversion infrared photodetector by nanospheres

Liu Shun-Rui, Nie Zhao-Ting, Zhang Ming-Lei, Wang Li, Leng Yan-Bing, Sun Yan-Jun
PDF
导出引用
  • 在红外波长上转换探测器氮化硅(SiNx)钝化层制作单层六角密排的二氧化硅(SiO2)纳米球阵列,以提高红外波长上转换探测器的整体效率.采用自组装的方法在器件钝化层上制备了直径分别约为300,450,750和1000 nm的SiO2纳米球,并与无表面微纳结构器件进行对比测试.结果表明:钝化层附着SiO2纳米球能有效地提高红外波长上转换器的光提取效率;当SiO2纳米球直径为750 nm时的光提取效率最优,是无表面微纳结构器件的2.6倍,可实现低成本制作高效率红外波长上转换探测器.
    In recent years, infrared (IR) photodetector has been extensively used and played an important role in environmental control, medical diagnostics, and satellite remote sensing. Therefore, the priority should be given to how to stimulate the development of imaging detection of weak IR signal. Up-conversion IR photodetector has an ability to detect quite weak IR signal in the large plane array focal plane, so it has civil and military significance. However, the poor light extraction efficiency due to total reflection severely restricts the overall efficiency of the up-conversion device, which has become one of the bottlenecks in improving the device efficiency.#br#In this work, we propose that the light-extraction efficiency of up-conversion IR photodetector can be improved by a self-assembled monolayer of SiO2 sphere. Thereby, the up-conversion efficiency can be enhanced. The up-conversion IR photodetector emits the light mainly from the silicon nitride (SiNx) passivation layer. And the hexagonal closely-packed SiO2 sphere monolayer is formed on the SiNx layer. In order to study the effect of the size of nanosphere on the light-extraction efficiency, we prepare the SiO2 spheres with diameters of 300, 450, 750, and 1000 nm respectively.#br#Results indicate that the devices with and without SiO2 nanospheres exhibit similar IR responses and dark currents, while the emission of device with SiO2 spheres obviously increases. And the light extraction efficiency increases up to an optimal level when the average size (750 nm) of SiO2 sphere approximates to the wavelength (770 nm) of light source. Taking into consideration other factors relating to external quantum efficiency, the light extraction efficiency of the device with 750-nm-sized SiO2 spheres on surface increases 2.6 times. In order to explain the physical mechanism for the light-extraction enhancement, we carry out the three-dimensional finite difference time-domain simulation, thereby calculating the transmission spectrum of the device with 750-nm-sized SiO2 spheres. Simulation results show that the incident light beyond critical angle can be partly extracted when the surface of up-conversion IR photodetector has a SiO2 sphere monolayer, leading to an enhanced light-extraction efficiency. So the SiO2 sphere monolayer acts as a two-dimensional diffraction grating, which behaves as a light scattering medium for the light propagating in a waveguiding mode within the up-conversion IR photodetector. Therefore it can be concluded that this is a simple and cost-effective method of improving the efficiency of up-conversion IR photodetector. The finding in this paper can also be applied to improving the light extraction efficiency of other semiconductor devices.
      通信作者: 孙艳军, custsun@126.com
    • 基金项目: 国家自然科学基金(批准号:11474037,11474041)资助的课题.
      Corresponding author: Sun Yan-Jun, custsun@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474037, 11474041).
    [1]

    Yang Y, Zhang Y H, Shen W Z, Liu H C 2011 Prog. Quant. Electron. 35 77

    [2]

    Rogalski A 2005 Prog. Phys. 68 2267

    [3]

    Yang Y, Liu H C, Hao M R, Shen W Z 2011 J. Appl. Phys. 110 074501

    [4]

    Dupont E, Byloos M, Gao M, Buchanan M, Song C Y, Wasilewski Z R, Liu H C 2002 IEEE Photon. Technol. Lett. 14 182

    [5]

    Izhnin I I, Dvoretsky S A, Mynbaev K D, Fitsych O I, Mikhailov N N, Varavin V S, Pociask-Bialy M, Voitsekhovskii A V, Sheregii E 2014 J. Appl. Phys. 115 163501

    [6]

    Xu W L, Xiong D Y, Li N, Zhen H L, Li Z F, Lu W 2007 Acta Phys. Sin. 56 5424(in Chinese)[徐文兰, 熊大元, 李宁, 甄红楼, 李志锋, 陆卫2007物理学报 56 5424]

    [7]

    Giorgetta F R, Baumann E, Graf M, Yang Q, Manz C, Köhler K, Harvey B E, David R A, Edmund L, Alexander D G, Yuriy F, Jäckel H, Milan F, Jérôme F, Daniel H 2009 J. Quant. Electron. 45 1039

    [8]

    Schnitzer I, Yablonovitch E, Caneau C, Gmitter T J, Scherer A 1993 Appl. Phys. Lett. 63 2174

    [9]

    Lin C F, Zheng J H, Yang Z J, Dai J J, Lin D Y, Chang C Y, Lai Z X, Hong C S 2006 Appl. Phys. Lett. 88 083121

    [10]

    Gao H, Kong F M, Li K, Chen X L, Ding Q A, Sun J 2012 Acta Phys. Sin. 61 127807(in Chinese)[高晖, 孔凡敏, 李康, 陈新莲, 丁庆安, 孙静2012物理学报 61 127807]

    [11]

    Lai C F, Chao C H, Kuo H C, Yen H H, Lee C E, Yeh W Y 2009 Appl. Phys. Lett. 94 123106

    [12]

    Hoshino T, Mabuchi K 2015 Appl. Phys. Express 8 087001

    [13]

    Chen Z X, Ren Y, Xiao G H, Li J T, Chen X, Wang X H, Jin C J, Zhang B J 2014 Chin. Phys. B 23 018502

    [14]

    Kim J Y, Kwon M K, Park S J, Kim S H, Lee K D 2010 Appl. Phys. Lett. 96 251103

    [15]

    Yuan D, Lu L S 2014 Key Eng. Mater. 589 537

    [16]

    Ye B U, Kim B J, Song Y H, Son J H, Yu H K, Kim M H, Lee J L, Baik J M 2012 Adv. Funct. Mater. 22 632

    [17]

    Wang C, Hao Z B, Wang L, Kang J B, Xie L L, Luo Y, Wang L, Wang J, Xiong B, Sun C Z, Han Y J, Li H T, Wang L, Wang W X, Chen H 2016 Acta Phys. Sin. 65 108501(in Chinese)[王超, 郝智彪, 王磊, 康健彬, 谢莉莉, 罗毅, 汪莱, 王健, 熊兵, 孙长征, 韩彦军, 李洪涛, 王禄, 王文新, 陈弘2016物理学报 65 108501]

    [18]

    Chen X, Liang Z H, Chen Z X, Yang W M, Chen T F, Jin C J, Zhang B J 2013 Chin. Phys. B 22 048101

    [19]

    Yao Y, Yao J, Nnarasimhan V K, Ruan Z, Xie C, Fan S, Cui Y 2012 Nature Commun. 3 664

    [20]

    Zhu Z C, Liu B, Cheng C W, Chen H, Gu M, Yi Y S, Mao R H 2014 Phys. Status Solidi A 211 1583

    [21]

    Fang C Y, Liu Y L, Lee Y C, Chen H L, Wan D H, YuC C 2013 Adv. Funct. Mater. 23 1412

  • [1]

    Yang Y, Zhang Y H, Shen W Z, Liu H C 2011 Prog. Quant. Electron. 35 77

    [2]

    Rogalski A 2005 Prog. Phys. 68 2267

    [3]

    Yang Y, Liu H C, Hao M R, Shen W Z 2011 J. Appl. Phys. 110 074501

    [4]

    Dupont E, Byloos M, Gao M, Buchanan M, Song C Y, Wasilewski Z R, Liu H C 2002 IEEE Photon. Technol. Lett. 14 182

    [5]

    Izhnin I I, Dvoretsky S A, Mynbaev K D, Fitsych O I, Mikhailov N N, Varavin V S, Pociask-Bialy M, Voitsekhovskii A V, Sheregii E 2014 J. Appl. Phys. 115 163501

    [6]

    Xu W L, Xiong D Y, Li N, Zhen H L, Li Z F, Lu W 2007 Acta Phys. Sin. 56 5424(in Chinese)[徐文兰, 熊大元, 李宁, 甄红楼, 李志锋, 陆卫2007物理学报 56 5424]

    [7]

    Giorgetta F R, Baumann E, Graf M, Yang Q, Manz C, Köhler K, Harvey B E, David R A, Edmund L, Alexander D G, Yuriy F, Jäckel H, Milan F, Jérôme F, Daniel H 2009 J. Quant. Electron. 45 1039

    [8]

    Schnitzer I, Yablonovitch E, Caneau C, Gmitter T J, Scherer A 1993 Appl. Phys. Lett. 63 2174

    [9]

    Lin C F, Zheng J H, Yang Z J, Dai J J, Lin D Y, Chang C Y, Lai Z X, Hong C S 2006 Appl. Phys. Lett. 88 083121

    [10]

    Gao H, Kong F M, Li K, Chen X L, Ding Q A, Sun J 2012 Acta Phys. Sin. 61 127807(in Chinese)[高晖, 孔凡敏, 李康, 陈新莲, 丁庆安, 孙静2012物理学报 61 127807]

    [11]

    Lai C F, Chao C H, Kuo H C, Yen H H, Lee C E, Yeh W Y 2009 Appl. Phys. Lett. 94 123106

    [12]

    Hoshino T, Mabuchi K 2015 Appl. Phys. Express 8 087001

    [13]

    Chen Z X, Ren Y, Xiao G H, Li J T, Chen X, Wang X H, Jin C J, Zhang B J 2014 Chin. Phys. B 23 018502

    [14]

    Kim J Y, Kwon M K, Park S J, Kim S H, Lee K D 2010 Appl. Phys. Lett. 96 251103

    [15]

    Yuan D, Lu L S 2014 Key Eng. Mater. 589 537

    [16]

    Ye B U, Kim B J, Song Y H, Son J H, Yu H K, Kim M H, Lee J L, Baik J M 2012 Adv. Funct. Mater. 22 632

    [17]

    Wang C, Hao Z B, Wang L, Kang J B, Xie L L, Luo Y, Wang L, Wang J, Xiong B, Sun C Z, Han Y J, Li H T, Wang L, Wang W X, Chen H 2016 Acta Phys. Sin. 65 108501(in Chinese)[王超, 郝智彪, 王磊, 康健彬, 谢莉莉, 罗毅, 汪莱, 王健, 熊兵, 孙长征, 韩彦军, 李洪涛, 王禄, 王文新, 陈弘2016物理学报 65 108501]

    [18]

    Chen X, Liang Z H, Chen Z X, Yang W M, Chen T F, Jin C J, Zhang B J 2013 Chin. Phys. B 22 048101

    [19]

    Yao Y, Yao J, Nnarasimhan V K, Ruan Z, Xie C, Fan S, Cui Y 2012 Nature Commun. 3 664

    [20]

    Zhu Z C, Liu B, Cheng C W, Chen H, Gu M, Yi Y S, Mao R H 2014 Phys. Status Solidi A 211 1583

    [21]

    Fang C Y, Liu Y L, Lee Y C, Chen H L, Wan D H, YuC C 2013 Adv. Funct. Mater. 23 1412

  • [1] 马腾宇, 李万俊, 何先旺, 胡慧, 黄利娟, 张红, 熊元强, 李泓霖, 叶利娟, 孔春阳. β-Ga2O3纳米材料的尺寸调控与光致发光特性. 物理学报, 2020, 69(10): 108102. doi: 10.7498/aps.69.20200158
    [2] 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究. 物理学报, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [3] 黄静雯, 罗利琼, 金波, 楚士晋, 彭汝芳. 六角星形MoSe2双层纳米片的制备及其光致发光性能. 物理学报, 2017, 66(13): 137801. doi: 10.7498/aps.66.137801
    [4] 王超, 郝智彪, 王磊, 康健彬, 谢莉莉, 罗毅, 汪莱, 王健, 熊兵, 孙长征, 韩彦军, 李洪涛, 王禄, 王文新, 陈弘. 利用表面微结构提高波长上转换红外探测器效率. 物理学报, 2016, 65(10): 108501. doi: 10.7498/aps.65.108501
    [5] 范志东, 周子淳, 刘绰, 马蕾, 彭英才. Eu掺杂Si纳米线的光致发光特性. 物理学报, 2015, 64(14): 148103. doi: 10.7498/aps.64.148103
    [6] 康健彬, 郝智彪, 王磊, 刘志林, 罗毅, 汪莱, 王健, 熊兵, 孙长征, 韩彦军, 李洪涛, 王禄, 王文新, 陈弘. 红外波长上转换器件中载流子阻挡结构的研究. 物理学报, 2015, 64(17): 178502. doi: 10.7498/aps.64.178502
    [7] 陈湛旭, 万巍, 何影记, 陈耿炎, 陈泳竹. 利用单层密排的纳米球提高发光二极管的出光效率. 物理学报, 2015, 64(14): 148502. doi: 10.7498/aps.64.148502
    [8] 王长远, 杨晓红, 马勇, 冯媛媛, 熊金龙, 王维. 水热合成ZnO:Cd纳米棒的微结构及光致发光特性. 物理学报, 2014, 63(15): 157701. doi: 10.7498/aps.63.157701
    [9] 陈新莲, 孔凡敏, 李康, 高晖, 岳庆炀. 无序光子晶体提高GaN基蓝光发光二极管光提取效率的研究. 物理学报, 2013, 62(1): 017805. doi: 10.7498/aps.62.017805
    [10] 程赛, 吕惠民, 石振海, 崔静雅. 碳泡沫衬底上氮化铝纳米线的生长及其光致发光特性研究. 物理学报, 2012, 61(12): 126201. doi: 10.7498/aps.61.126201
    [11] 岳庆炀, 孔凡敏, 李康, 赵佳. 基于缺陷光子晶体结构的GaN基发光二极管光提取效率的有关研究. 物理学报, 2012, 61(20): 208502. doi: 10.7498/aps.61.208502
    [12] 方合, 王顺利, 李立群, 李培刚, 刘爱萍, 唐为华. 液相激光烧蚀合成ZnO及Zn/ZnO纳米颗粒及其光致发光性能. 物理学报, 2011, 60(9): 096102. doi: 10.7498/aps.60.096102
    [13] 陈依新, 郑婉华, 陈微, 陈良惠, 汤益丹, 沈光地. 表面为二维光子晶体结构的AlGaInP系发光二极管的研究. 物理学报, 2010, 59(11): 8083-8087. doi: 10.7498/aps.59.8083
    [14] 郑立仁, 黄柏标, 尉吉勇. 不同气氛下SiOx纳米线的制备及形貌、红外、光致发光研究. 物理学报, 2009, 58(4): 2306-2312. doi: 10.7498/aps.58.2306
    [15] 于 威, 李亚超, 丁文革, 张江勇, 杨彦斌, 傅广生. 氮化硅薄膜中纳米非晶硅颗粒的键合结构及光致发光. 物理学报, 2008, 57(6): 3661-3665. doi: 10.7498/aps.57.3661
    [16] 唐 斌, 邓 宏, 税正伟, 韦 敏, 陈金菊, 郝 昕. 掺AlZnO纳米线阵列的光致发光特性研究. 物理学报, 2007, 56(9): 5176-5179. doi: 10.7498/aps.56.5176
    [17] 王英龙, 卢丽芳, 闫常瑜, 褚立志, 周 阳, 傅广生, 彭英才. 具有窄光致发光谱的纳米Si晶薄膜的激光烧蚀制备. 物理学报, 2005, 54(12): 5738-5742. doi: 10.7498/aps.54.5738
    [18] 黄凯, 王思慧, 施毅, 秦国毅, 张荣, 郑有炓. 内电场对纳米硅光致发光谱的影响. 物理学报, 2004, 53(4): 1236-1242. doi: 10.7498/aps.53.1236
    [19] 张喜田, 肖芝燕, 张伟力, 高 红, 王玉玺, 刘益春, 张吉英, 许 武. 高质量纳米ZnO薄膜的光致发光特性研究. 物理学报, 2003, 52(3): 740-744. doi: 10.7498/aps.52.740
    [20] 马书懿, 秦国刚, 尤力平, 王印月. 含纳米硅和纳米锗的氧化硅薄膜光致发光的比较研究. 物理学报, 2001, 50(8): 1580-1584. doi: 10.7498/aps.50.1580
计量
  • 文章访问数:  4795
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-09
  • 修回日期:  2017-06-21
  • 刊出日期:  2017-09-05

/

返回文章
返回