搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

吸收谱线Doppler展宽对原子多步光电离的影响

卢肖勇 张小章 张志忠

引用本文:
Citation:

吸收谱线Doppler展宽对原子多步光电离的影响

卢肖勇, 张小章, 张志忠

Influences of Doppler broadening of absorption lines on a multi-step photoionization process of atoms

Lu Xiao-Yong, Zhang Xiao-Zhang, Zhang Zhi-Zhong
PDF
导出引用
  • 原子法激光同位素分离的核心之一是如何高效地将原子激发电离.本文从原子法激光同位素分离的实际情况出发,研究了原子吸收谱线的Doppler展宽对原子电离率的影响.研究中使用的理论工具是原子激发电离的密度矩阵方程,并利用数值计算方法对方程进行求解.研究结果表明:当吸收谱线有Doppler展宽时,在激光参数不变的条件下原子电离率会降低;且当激光功率固定时,存在使原子电离率为最大的线宽值.这与已发表文献中无Doppler展宽时的计算结果有很大不同.为了追求最佳的原子电离效果,在原子法激光同位素分离系统中激光应该尽可能地工作在最佳线宽条件下.如果激光线宽有不可控的随机波动,在技术上让激光线宽略大于最佳线宽更为有利.无论如何控制激光线宽,尽可能地降低原子吸收谱线的Doppler展宽都有利于原子电离率的提高.
    Photoexcitation and photoionization of atoms, the central part of atom vapor laser isotope separation (AVLIS), relate to the ionization yield and isotope selectivity directly. Doppler broadening of absorption lines is one of the parameters that influence the photoexcitation and photoionization process of atoms. When evaporation temperature is high or beam equipment is absent, Doppler broadening has obvious influence on the ionization yield because most of atoms are non-resonantly excited. In this paper, we study the influences of Doppler broadening of absorption lines on a multi-step photoexcitation and photoionization process of atoms according to the facts of AVLIS. A Doppler-broadened three-level atom system with two resonant lasers is investigated. The interaction between laser field and atoms is described by a density matrix, which is calculated by fourth-order Runge-Kutta numerical method with variable steps. The results show that the ionization yield of atoms decreases with the increase of Doppler broadening of absorption lines under the same laser parameters. At a constant laser power, the ionization yield reaches its maximum value at the best laser bandwidths, which is different from that obtained without Doppler broadening, as reported in published papers. Meanwhile, the best laser bandwidth increases with the increase of Rabi frequency and Doppler broadening when other parameters are constant. Moreover, the best bandwidth of the second laser is smaller than that of the first laser in a multi-step photoionization process of atoms. Therefore, lasers should work at the best bandwidths in AVLIS for highest ionization yield. It is advantageous to make laser bandwidths slightly bigger than the best bandwidths technically for smaller fluctuation of ionization yield, owing to incoercible stochastic volatility in laser bandwidths. The ionization yield increases with the decrease of Doppler broadening, especially at the best laser bandwidths. Therefore, it is necessary to reduce Doppler broadening of atom vapor in laser ionization zone.
      通信作者: 张小章, zhangxzh@mail.tsinghua.edu.cn
      Corresponding author: Zhang Xiao-Zhang, zhangxzh@mail.tsinghua.edu.cn
    [1]

    Wang D W 1999 Theory and Application of Laser Isotope Separation (Beijing:Atomic Energy Press) pp167-170 (in Chinese)[王德武 1999 激光分离同位素理论及其应用(北京:原子能出版社) 第167170页]

    [2]

    Xie S L, Wang D W, Ying C T 1997 Chin. J. Nucl. Sci. Eng. 17 166 (in Chinese)[谢世亮, 王德武, 应纯同 1997 核科学与工程 17 166]

    [3]

    Fan F Y, Wang L J 2011 Acta Phys. Sin. 60 093203 (in Chinese)[范凤英, 王立军 2011 物理学报 60 093203]

    [4]

    Zoller P, Lambropoulos P 1980 J. Phys. B:Atom. Molec. Phys. 13 69

    [5]

    Choe A S, Rhee Y, Lee J, Kuzmina M A, Mishin V A 1995 J. Phys. B:At. Mol. Opt. Phys. 28 3805

    [6]

    Zoller P 1979 Phys. Rev. A 19 1151

    [7]

    Qi X Q, Wang F, Dai C J 2015 Acta Phys. Sin. 64 133201 (in Chinese)[戚晓秋, 汪峰, 戴长建 2015 物理学报 64 133201]

    [8]

    Agostini P, Georges A T, Wheatley S E, Lambropoulos P, Levenson M D 1978 J. Phys. B:Atom. Molec. Phys. 11 1733

    [9]

    Dai B N, Lambropoulos P 1986 Phys. Rev. A 34 3954

    [10]

    Olivares I E, Duarte A E, Saravia E A, Duarte F J 2002 Appl. Opt. 41 2973

    [11]

    Saleem M, Hussain S, Rafiq M, Baig M A 2006 J. Appl. Phys. 100 053111

    [12]

    Jana B, Majumder A, Kathar P T, Das A K 2011 Appl. Phys. B 102 841

    [13]

    Brinkmann U, Hartig W, Telle H, Walther H 1974 Appl. Phys. 5 109

    [14]

    Li Z M, Zhu F R, Deng H, Zhang Z B, Ren X J, Zhai L H, Wei G Y, Zhang L X 2002 J. Atom. Mol. Phys. 19 383 (in Chinese)[李志明, 朱凤蓉, 邓虎, 张子斌, 任向军, 翟利华, 韦冠一, 张利兴 2002 原子与分子物理学报 19 383]

    [15]

    Demtrder W (translated by Ji Y) 2012 Laser Spectroscopy (Vol. 2:Experimental Techniques) (Beijing:Science Press) pp147-161 (in Chinese)[沃尔夫冈戴姆特瑞德 著 (姬扬 译) 2012 激光光谱学(第2卷:实验技术) (北京:科学出版社) 第147161页]

    [16]

    Sankari M, Kumar P V K, Suryanarayana M V 2006 Opt. Commun. 259 612

    [17]

    Pomerantz A E, Zare R N 2003 Chem. Phys. Lett. 370 515

    [18]

    Zhang G Y, Tao Q Y, Ren Z, Zheng H M 2016 Optik 127 8570

    [19]

    Das R M, Chatterjee S, Iwasaki M, Nakajima T 2015 J. Opt. Soc. Am. B:Opt. Phys. 32 1237

    [20]

    Bo Y, Bao C Y, Zhu Y H, Wang D W, Yu Y H 2000 J. Tsinghua Univ. (Sci. Tech.) 40 16 (in Chinese)[薄湧, 包成玉, 诸渔泓, 王德武, 余耀辉 2000 清华大学学报(自然科学版) 40 16]

    [21]

    Xie G F, Wang D W, Ying C T 2002 J. Tsinghua Univ. (Sci. Tech.) 42 1011 (in Chinese)[谢国锋, 王德武, 应纯同 2002 清华大学学报(自然科学版) 42 1011]

  • [1]

    Wang D W 1999 Theory and Application of Laser Isotope Separation (Beijing:Atomic Energy Press) pp167-170 (in Chinese)[王德武 1999 激光分离同位素理论及其应用(北京:原子能出版社) 第167170页]

    [2]

    Xie S L, Wang D W, Ying C T 1997 Chin. J. Nucl. Sci. Eng. 17 166 (in Chinese)[谢世亮, 王德武, 应纯同 1997 核科学与工程 17 166]

    [3]

    Fan F Y, Wang L J 2011 Acta Phys. Sin. 60 093203 (in Chinese)[范凤英, 王立军 2011 物理学报 60 093203]

    [4]

    Zoller P, Lambropoulos P 1980 J. Phys. B:Atom. Molec. Phys. 13 69

    [5]

    Choe A S, Rhee Y, Lee J, Kuzmina M A, Mishin V A 1995 J. Phys. B:At. Mol. Opt. Phys. 28 3805

    [6]

    Zoller P 1979 Phys. Rev. A 19 1151

    [7]

    Qi X Q, Wang F, Dai C J 2015 Acta Phys. Sin. 64 133201 (in Chinese)[戚晓秋, 汪峰, 戴长建 2015 物理学报 64 133201]

    [8]

    Agostini P, Georges A T, Wheatley S E, Lambropoulos P, Levenson M D 1978 J. Phys. B:Atom. Molec. Phys. 11 1733

    [9]

    Dai B N, Lambropoulos P 1986 Phys. Rev. A 34 3954

    [10]

    Olivares I E, Duarte A E, Saravia E A, Duarte F J 2002 Appl. Opt. 41 2973

    [11]

    Saleem M, Hussain S, Rafiq M, Baig M A 2006 J. Appl. Phys. 100 053111

    [12]

    Jana B, Majumder A, Kathar P T, Das A K 2011 Appl. Phys. B 102 841

    [13]

    Brinkmann U, Hartig W, Telle H, Walther H 1974 Appl. Phys. 5 109

    [14]

    Li Z M, Zhu F R, Deng H, Zhang Z B, Ren X J, Zhai L H, Wei G Y, Zhang L X 2002 J. Atom. Mol. Phys. 19 383 (in Chinese)[李志明, 朱凤蓉, 邓虎, 张子斌, 任向军, 翟利华, 韦冠一, 张利兴 2002 原子与分子物理学报 19 383]

    [15]

    Demtrder W (translated by Ji Y) 2012 Laser Spectroscopy (Vol. 2:Experimental Techniques) (Beijing:Science Press) pp147-161 (in Chinese)[沃尔夫冈戴姆特瑞德 著 (姬扬 译) 2012 激光光谱学(第2卷:实验技术) (北京:科学出版社) 第147161页]

    [16]

    Sankari M, Kumar P V K, Suryanarayana M V 2006 Opt. Commun. 259 612

    [17]

    Pomerantz A E, Zare R N 2003 Chem. Phys. Lett. 370 515

    [18]

    Zhang G Y, Tao Q Y, Ren Z, Zheng H M 2016 Optik 127 8570

    [19]

    Das R M, Chatterjee S, Iwasaki M, Nakajima T 2015 J. Opt. Soc. Am. B:Opt. Phys. 32 1237

    [20]

    Bo Y, Bao C Y, Zhu Y H, Wang D W, Yu Y H 2000 J. Tsinghua Univ. (Sci. Tech.) 40 16 (in Chinese)[薄湧, 包成玉, 诸渔泓, 王德武, 余耀辉 2000 清华大学学报(自然科学版) 40 16]

    [21]

    Xie G F, Wang D W, Ying C T 2002 J. Tsinghua Univ. (Sci. Tech.) 42 1011 (in Chinese)[谢国锋, 王德武, 应纯同 2002 清华大学学报(自然科学版) 42 1011]

  • [1] 杨家齐, 赵刚, 焦康, 高健, 闫晓娟, 赵延霆, 马维光, 贾锁堂. 基于光学反馈频率锁定的窄线宽稳定中红外激光产生技术研究. 物理学报, 2024, 73(1): 014205. doi: 10.7498/aps.73.20231049
    [2] 卢肖勇, 张小章, 张志忠. 厚原子蒸气介质中原子选择性光电离的理论研究. 物理学报, 2018, 67(8): 083202. doi: 10.7498/aps.67.20172340
    [3] 杨佳琦, 刘加东, 刘涛, 张志忠. 激发光线宽对原子光致漂移速率的影响. 物理学报, 2018, 67(11): 113201. doi: 10.7498/aps.67.20180375
    [4] 俞祖卿, 杨魏吉, 何峰. H2+在强激光脉冲作用下的电离率和原子核间距的关系. 物理学报, 2016, 65(20): 204202. doi: 10.7498/aps.65.204202
    [5] 张孔, 白建东, 何军, 王军民. 激光线宽对单次通过PPMgO:LN晶体倍频效率的影响. 物理学报, 2016, 65(7): 074207. doi: 10.7498/aps.65.074207
    [6] 许新科, 刘国栋, 刘炳国, 陈凤东, 庄志涛, 甘雨. 基于光纤色散相位补偿的高分辨率激光频率扫描干涉测量研究. 物理学报, 2015, 64(21): 219501. doi: 10.7498/aps.64.219501
    [7] 戚晓秋, 汪峰, 戴长建. 碱金属原子的光激发与光电离. 物理学报, 2015, 64(13): 133201. doi: 10.7498/aps.64.133201
    [8] 陈浩然, 杨林安, 朱樟明, 林志宇, 张进成. 基于AlGaN/GaN共振隧穿二极管的退化现象的研究. 物理学报, 2013, 62(21): 217301. doi: 10.7498/aps.62.217301
    [9] 林晓东, 邓涛, 解宜原, 吴加贵, 陈建国, 吴正茂, 夏光琼. 基于光注入半导体激光器单周期振荡的光子微波产生及全光线宽窄化. 物理学报, 2012, 61(19): 194212. doi: 10.7498/aps.61.194212
    [10] 倪家升, 赵燕杰, 王昌, 彭刚定, 刘统玉, 常军, 孙志慧. 分布反馈式光纤激光器线宽特性及其展宽机理研究. 物理学报, 2012, 61(8): 084205. doi: 10.7498/aps.61.084205
    [11] 张帆, 李林, 马晓辉, 李占国, 隋庆学, 高欣, 曲轶, 薄报学, 刘国军. InGaAs/GaAs应变量子阱激光器线宽展宽因子的理论研究. 物理学报, 2012, 61(5): 054209. doi: 10.7498/aps.61.054209
    [12] 贾克宁, 梁颖, 刘中波, 仝殿民, 樊锡君. Y型四能级系统中Doppler展宽对真空诱导相干性相关的探测场吸收的影响. 物理学报, 2012, 61(5): 054207. doi: 10.7498/aps.61.054207
    [13] 贾克宁, 刘中波, 梁颖, 仝殿民, 樊锡君. Y型四能级系统中Doppler展宽对VIC相关的双光子吸收的影响. 物理学报, 2012, 61(6): 064204. doi: 10.7498/aps.61.064204
    [14] 张良英, 金国祥, 曹力. 具有频率噪声的单模激光线性模型随机共振. 物理学报, 2011, 60(4): 044207. doi: 10.7498/aps.60.044207
    [15] 范凤英, 王立军. 激光线宽和光强对同位素原子选择光电离的影响. 物理学报, 2011, 60(9): 093203. doi: 10.7498/aps.60.093203
    [16] 王巧占, 于润升, 秦秀波, 李玉晓, 王宝义, 贾全杰. 介孔SiO2薄膜孔结构的慢正电子技术表征. 物理学报, 2009, 58(12): 8478-8483. doi: 10.7498/aps.58.8478
    [17] 马 慧, 卜凡阁, 乔红霞, 仝殿民, 樊锡君. Doppler展宽的封闭原子系统中无反转增益的相位控制. 物理学报, 2008, 57(1): 206-211. doi: 10.7498/aps.57.206
    [18] 王立军, 余慧莺. 窄带激光与能级具有超精细结构的二能级原子的相干激发. 物理学报, 2004, 53(12): 4151-4156. doi: 10.7498/aps.53.4151
    [19] 郑丽萍, 邱锡钧. 光强、频率对强激光场中的多原子分子离子增强电离行为的影响. 物理学报, 2000, 49(10): 1965-1968. doi: 10.7498/aps.49.1965
    [20] 熊 锦, 胡响明, 彭金生. 非旋波近似下的激光线宽. 物理学报, 1999, 48(10): 1864-1868. doi: 10.7498/aps.48.1864
计量
  • 文章访问数:  4782
  • PDF下载量:  132
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-15
  • 修回日期:  2017-07-10
  • 刊出日期:  2017-10-05

/

返回文章
返回