搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气泡体积分数对沙质沉积物低频声学特性的影响

王飞 黄益旺 孙启航

引用本文:
Citation:

气泡体积分数对沙质沉积物低频声学特性的影响

王飞, 黄益旺, 孙启航

Effect of gas bubble volume fraction on low-frequency acoustic characteristic of sandy sediment

Wang Fei, Huang Yi-Wang, Sun Qi-Hang
PDF
导出引用
  • 由于有机物质分解等原因,实际的海底沉积物中存在气泡,气泡的存在会显著影响沉积物低频段的声学特性,因此研究气泡对沉积物低频段声速的影响机理具有重要意义.考虑到外场环境的不可控性,在室内水池中搭建了大尺度含气非饱和沙质沉积物声学特性获取平台,在有界空间中应用多水听器反演方法首次获取了含气非饱和沙质沉积物3003000 Hz频段内的声速数据(79142 m/s),并同时利用双水听器法获取了同一频段的数据(112121 m/s).在声波频率远低于沉积物中最大气泡的共振频率时,根据等效介质理论,将孔隙水和气泡等效为一种均匀流体,改进了水饱和等效密度流体近似模型.模型揭示了气泡对沉积物低频段声学特性的影响规律,理论上解释了沉积物中声速的降低.通过分析模型预报声速对模型参数的敏感性,根据测量得到的声速分布反演得到了沉积物不同区域的气泡体积分数,气泡体积分数从1.07%变化到2.81%.改进的模型为沉积物中气泡体积分数估计提供了一种新方法.
    Owing to the decomposition of organic material and other reasons, the actual marine sediment contains gas bubbles, and the existence of gas bubbles will significantly affect the low-frequency acoustic characteristics of sediment. Therefore, it is significant to investigate the effect of gas bubbles on the low-frequency sound velocity in the sediment. Considering the uncontrollable environmental factors of field experiment, an experiment platform for obtaining acoustic characteristics of a large-scale gas-bearing unsaturated sandy sediment is constructed in the indoor water tank. Considering the long wavelength of low-frequency acoustic wave and the multipath interference in water tank, the transmitted acoustic signals are received by hydrophones which are buried in the unsaturated sediment. The sound velocity data (79-142 m/s) in the gas-bearing unsaturated sediment are acquired by using a multi-hydrophone inversion method in the bounded space for the first time in a 300-3000 Hz range, and the sound velocity data (112-121 m/s) are also acquired by using a double-hydrophone method in the same frequency range. The refraction experiments at different horizontal distances between the source and the hydrophones are conducted, which verifies the reliability of sound velocity data acquired by using the multi-hydrophone inversion method and the double-hydrophone method. At the acoustic frequency well below the resonance frequency of the largest bubble in the sediment, the pore water and the gas bubbles are regarded as an effective uniform fluid based on effective medium theory. On this basis, the density and the bulk elastic modulus of pore water in the effective density fluid model are replaced by the effective density and the effective bulk modulus of the effective uniform fluid, then a corrected effective density fluid model is proposed in gas-bearing unsaturated sediment. The numerical analysis indicates that when the gas bubble volume fraction is small (1%), a small increase in the gas bubble will cause a significant decrease in the effective bulk elastic modulus of sediment, but the density of pore water is much greater than the density of gas bubbles, the presence of a small number of gas bubbles hardly changes the density of pore fluid and certainly does not change the density of sediment, which results in a significant decrease at a low-frequency sound velocity in the gas-bearing unsaturated sediment. Furthermore, with the increase of gas bubble volume fraction, the sound velocity predicted by the corrected model gradually decreases, and the decreasing trend gradually becomes gentle. The corrected model reveals the effect of gas bubbles on the low-frequency acoustic characteristic of sediment. By analyzing the sensitivity of the predicted sound velocity to parameters of the model, the gas bubble volume fractions (1.07%-2.81%) of different areas are acquired by inversion according to the measured sound velocity distribution and the corrected model. In the future, it will provide a new method of obtaining the volume fraction and the distribution of gas bubbles in the sediment.
      通信作者: 黄益旺, huangyiwang@hrbeu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11274078)资助的课题.
      Corresponding author: Huang Yi-Wang, huangyiwang@hrbeu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274078).
    [1]

    Turgut A, Yamamoto T 1990 J. Acoust. Soc. Am. 87 2376

    [2]

    Maguer A, Bovio E, Fox W L J, Schmidt H 2000 J. Acoust. Soc. Am. 108 987

    [3]

    Rosenfeld I, Carey W M, Cable P G, Siegmann W L 2001 IEEE J. Ocean. Eng. 26 809

    [4]

    Stoll R D 2002 J. Acoust. Soc. Am. 111 785

    [5]

    Williams K L, Jackson D R, Thorsos E I, Tang D J, Schock S G 2002 IEEE J. Ocean. Eng. 27 413

    [6]

    Chotiros N P, Lyons A P, Osler J, Pace N G 2002 J. Acoust. Soc. Am. 112 1831

    [7]

    Wilson P S, Reed A H, Wilbur J C, Roy R A 2007 J. Acoust. Soc. Am. 121 824

    [8]

    Biot M A 1956 J. Acoust. Soc. Am. 28 168

    [9]

    Biot M A 1956 J. Acoust. Soc. Am. 28 179

    [10]

    Stoll R D, Kan T K 1981 J. Acoust. Soc. Am. 70 149

    [11]

    Williams K L 2001 J. Acoust. Soc. Am. 110 2276

    [12]

    Kimura M 2006 J. Acoust. Soc. Am. 120 699

    [13]

    Kimura M 2008 J. Acoust. Soc. Am. 123 2542

    [14]

    Anderson A L, Hampton L D 1980 J. Acoust. Soc. Am. 67 1865

    [15]

    Anderson A L, Hampton L D 1980 J. Acoust. Soc. Am. 67 1890

    [16]

    Lee K M, Ballard M S, Muir T G 2015 J. Acoust. Soc. Am. 138 1886

    [17]

    Li H X, Tao C H, Lin F L, Zhou J P 2015 Acta Phys.Sin. 64 109101 (in Chinese) [李红星, 陶春辉, 刘富林, 周建平 2015 物理学报 64 109101]

    [18]

    Tth Z, Spiess V, Mogolln J M, Jensen J B 2014 J. Geophys. Res. Solid Earth 119 8577

    [19]

    Ecker C, Dvorkin J, Nur A M 2000 Geophysics 65 565

    [20]

    Ghosh R, Sain K, Ojha M 2010 Mar. Geophys. Res. 31 29

    [21]

    Wilson P S, Reed A H, Wood W T, Roy R A 2008 J. Acoust. Soc. Am. 123 EL99

    [22]

    Mavko G, Mukerji T, Dvorkin J 1998 The Rock Physics Handbook (New York:Cambridge University Press) pp110-112

    [23]

    Wilkens R H, Richardson M D 1998 Cont. Shelf Res. 18 1859

    [24]

    Schock S G 2004 IEEE J. Ocean. Eng. 29 1200

    [25]

    Hovem J M, Ingram G D 1979 J. Acoust. Soc. Am. 66 1807

    [26]

    Zheng G Y, Huang Y W, Hua J, Xu X Y, Wang F 2017 J. Acoust. Soc. Am. 141 EL32

  • [1]

    Turgut A, Yamamoto T 1990 J. Acoust. Soc. Am. 87 2376

    [2]

    Maguer A, Bovio E, Fox W L J, Schmidt H 2000 J. Acoust. Soc. Am. 108 987

    [3]

    Rosenfeld I, Carey W M, Cable P G, Siegmann W L 2001 IEEE J. Ocean. Eng. 26 809

    [4]

    Stoll R D 2002 J. Acoust. Soc. Am. 111 785

    [5]

    Williams K L, Jackson D R, Thorsos E I, Tang D J, Schock S G 2002 IEEE J. Ocean. Eng. 27 413

    [6]

    Chotiros N P, Lyons A P, Osler J, Pace N G 2002 J. Acoust. Soc. Am. 112 1831

    [7]

    Wilson P S, Reed A H, Wilbur J C, Roy R A 2007 J. Acoust. Soc. Am. 121 824

    [8]

    Biot M A 1956 J. Acoust. Soc. Am. 28 168

    [9]

    Biot M A 1956 J. Acoust. Soc. Am. 28 179

    [10]

    Stoll R D, Kan T K 1981 J. Acoust. Soc. Am. 70 149

    [11]

    Williams K L 2001 J. Acoust. Soc. Am. 110 2276

    [12]

    Kimura M 2006 J. Acoust. Soc. Am. 120 699

    [13]

    Kimura M 2008 J. Acoust. Soc. Am. 123 2542

    [14]

    Anderson A L, Hampton L D 1980 J. Acoust. Soc. Am. 67 1865

    [15]

    Anderson A L, Hampton L D 1980 J. Acoust. Soc. Am. 67 1890

    [16]

    Lee K M, Ballard M S, Muir T G 2015 J. Acoust. Soc. Am. 138 1886

    [17]

    Li H X, Tao C H, Lin F L, Zhou J P 2015 Acta Phys.Sin. 64 109101 (in Chinese) [李红星, 陶春辉, 刘富林, 周建平 2015 物理学报 64 109101]

    [18]

    Tth Z, Spiess V, Mogolln J M, Jensen J B 2014 J. Geophys. Res. Solid Earth 119 8577

    [19]

    Ecker C, Dvorkin J, Nur A M 2000 Geophysics 65 565

    [20]

    Ghosh R, Sain K, Ojha M 2010 Mar. Geophys. Res. 31 29

    [21]

    Wilson P S, Reed A H, Wood W T, Roy R A 2008 J. Acoust. Soc. Am. 123 EL99

    [22]

    Mavko G, Mukerji T, Dvorkin J 1998 The Rock Physics Handbook (New York:Cambridge University Press) pp110-112

    [23]

    Wilkens R H, Richardson M D 1998 Cont. Shelf Res. 18 1859

    [24]

    Schock S G 2004 IEEE J. Ocean. Eng. 29 1200

    [25]

    Hovem J M, Ingram G D 1979 J. Acoust. Soc. Am. 66 1807

    [26]

    Zheng G Y, Huang Y W, Hua J, Xu X Y, Wang F 2017 J. Acoust. Soc. Am. 141 EL32

  • [1] 胥强荣, 朱洋, 林康, 沈承, 卢天健. 一种具有动态磁负刚度薄膜声学超材料的低频隔声特性. 物理学报, 2022, 71(21): 214301. doi: 10.7498/aps.71.20221058
    [2] 朱宇博, 徐华, 李民, 徐苗, 彭俊彪. 镨掺杂铟镓氧化物薄膜晶体管的低频噪声特性分析. 物理学报, 2021, 70(16): 168501. doi: 10.7498/aps.70.20210368
    [3] 胥强荣, 沈承, 韩峰, 卢天健. 一种准零刚度声学超材料板的低频宽频带隔声行为. 物理学报, 2021, 70(24): 244302. doi: 10.7498/aps.70.20211203
    [4] 沈惠杰, 郁殿龙, 汤智胤, 苏永生, 李雁飞, 刘江伟. 暗声学超材料型充液管道的低频消声特性. 物理学报, 2019, 68(14): 144301. doi: 10.7498/aps.68.20190311
    [5] 翟世龙, 王元博, 赵晓鹏. 基于声学超材料的低频可调吸收器. 物理学报, 2019, 68(3): 034301. doi: 10.7498/aps.68.20181908
    [6] 张永燕, 吴九汇, 钟宏民. 新型负模量声学超结构的低频宽带机理研究. 物理学报, 2017, 66(9): 094301. doi: 10.7498/aps.66.094301
    [7] 王成会, 莫润阳, 胡静. 低频超声空化场中柱状泡群内气泡的声响应. 物理学报, 2016, 65(14): 144301. doi: 10.7498/aps.65.144301
    [8] 薛佳, 秦际良, 张玉驰, 李刚, 张鹏飞, 张天才, 彭堃墀. 低频标准真空涨落的测量. 物理学报, 2016, 65(4): 044211. doi: 10.7498/aps.65.044211
    [9] 李红星, 陶春辉, 刘富林, 周建平. 气泡对沉积物声学特性影响研究:以东海沉积物为例. 物理学报, 2015, 64(10): 109101. doi: 10.7498/aps.64.109101
    [10] 刘远, 吴为敬, 李斌, 恩云飞, 王磊, 刘玉荣. 非晶铟锌氧化物薄膜晶体管的低频噪声特性与分析. 物理学报, 2014, 63(9): 098503. doi: 10.7498/aps.63.098503
    [11] 梁国龙, 庞福滨, 张光普. 吸声材料对水下小平台上矢量传感器声学特性的影响研究. 物理学报, 2014, 63(3): 034303. doi: 10.7498/aps.63.034303
    [12] 王莹, 程用志, 聂彦, 龚荣洲. 基于集总元件的低频宽带超材料吸波体设计与实验研究. 物理学报, 2013, 62(7): 074101. doi: 10.7498/aps.62.074101
    [13] 孔维姝, 胡林, 张兴刚, 岳国联. 颗粒堆的体积分数与制备流量关系的实验研究. 物理学报, 2010, 59(1): 411-416. doi: 10.7498/aps.59.411
    [14] 樊飞, 班春燕, 王洋, 巴启先, 崔建忠. 普通铸造和低频电磁铸造7050铝合金电阻率-温度特性的研究. 物理学报, 2009, 58(1): 638-643. doi: 10.7498/aps.58.638
    [15] 李红星, 陶春辉, 周建平, 邓居智, 邓显明, 方根显. 非胶结含水合物沉积物修正等效介质速度模型及其地震波场特征研究. 物理学报, 2009, 58(11): 8083-8093. doi: 10.7498/aps.58.8083
    [16] 罗成林, 杨兵初, 戎茂华. 磁场对滤纸上Zn电解沉积物形貌的影响. 物理学报, 2006, 55(7): 3778-3784. doi: 10.7498/aps.55.3778
    [17] 罗成林, 杨兵初, 戎茂华. 弱磁场对Zn分枝状电解沉积物形貌的影响. 物理学报, 2006, 55(3): 1523-1528. doi: 10.7498/aps.55.1523
    [18] 虞心南. Cu-Zr合金在氢气氛中退火后表面Cu沉积物的光电子能谱研究. 物理学报, 1991, 40(9): 1501-1504. doi: 10.7498/aps.40.1501
    [19] 丁屹, 俞文海. 快离子导体的低频交流特性分析. 物理学报, 1988, 37(7): 1213-1216. doi: 10.7498/aps.37.1213
    [20] 费庆宇, 黄炳忠. 射频溅射无定形硅的总空位体积分数. 物理学报, 1985, 34(11): 1413-1421. doi: 10.7498/aps.34.1413
计量
  • 文章访问数:  4103
  • PDF下载量:  164
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-11
  • 修回日期:  2017-07-05
  • 刊出日期:  2017-10-05

/

返回文章
返回