搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

共掺杂Ce3+调控-NaLuF4:Yb3+/Ho3+纳米晶体的上转换荧光发射

高伟 董军

引用本文:
Citation:

共掺杂Ce3+调控-NaLuF4:Yb3+/Ho3+纳米晶体的上转换荧光发射

高伟, 董军

Tuning upconversion fluorescence emission of -NaLuF4:Yb3+/Ho3+ nanocrystals through codoping Ce3+ ions

Gao Wei, Dong Jun
PDF
导出引用
  • 在980 nm近红外光激发下,通过共掺杂Ce3+离子调控六方相NaLuF4:Yb3+/Ho3+纳米晶体的上转换荧光发射.实验结果表明,当掺杂Ce3+离子浓度从0增加到12.0%时,Ho3+离子的上转换荧光发射实现了由绿光向红光的转变,其红绿比提高了近24倍.根据Ho3+离子的能级结构发现,Ho3+离子的红光发射源自5F5能级到5I8能级的辐射跃迁,因此要增强红光发射,必须提高该能级粒子数布居.Ho3+与Ce3+离子之间相近的能级差促使它们之间产生了共振交叉弛豫,从而有效地提高了Ho3+离子5F5能级的粒子数布居,增强了红光发射.同时对Ho3+离子的上转换调控机理进行讨论,并借助不同的激发策略,进一步证实了Ho3+与Ce3+离子之间相互作用的发生.
    Rare-earth-doped up-conversion (UC) fluoride materials have been widely used in phosphors, color displays, optical storages, solid-state lasers, solar cells and biomedical imaging, due to the fact that their low phonon energy can effectively suppress the nonradiative multiphonon relaxation process. In this work, the NaLuF4:Yb3+/Ho3+ nanocrystals are successfully synthesized by a facile solvothermal method. The crystal structure and morphology of the NaLuF4 nanocrystals are characterized by the X-ray diffraction (XRD) patterns and transmission electron microscopy (TEM) respectively. The diffraction peaks are well consistent with those of high-purity hexagonal NaLuF4 (JCPDS No. 77-2042, P63/m space group). The TEM image reveals that the product is composed of monodisperse hexagonal rods with an average length of about 170 nm and an average diameter of 30 nm. The crystal structure and morphology do not present obvious change with the increasing Ce3+ ion concentration, which is due to the similarity in ion radius between Ce3+ and Lu3+. Under 980 nm excitation, the UC emissions of -NaLuF4:Yb3+/Ho3+ nanocrystals with different Ce3+ codoping concentrations are carefully studied. The strong green and red UC emissions of Ho3+ ions are observed in -NaLuF4 nanocrystals. It can be found that the UC emission of Ho3+ ions is tuned from green to red in -NaLuF4 nanocrystals through increasing Ce3+ ion concentrations from 0 to 12%, and the red-to-green (R/G) ratio is enhanced from 0.34 to 8.44. According to the level structure of Ho3+ ions, the red UC emission originates from the excited state 5F5. However, the population of the 5F5 excited state mainly depends on the two nonradiative relaxation processes of 5S2/5F45F5 and 5I65I7 transitions. In fact, the two nonradiative relaxation processes are very difficult to occur according to multiphonon nonradiative relaxation rate. When Ce3+ ion is introduced into the system, the red UC emission intensity and R/G ratio of Ho3+ are increased, because the energy gap from the excited state 5F7/2 to the ground state 2F5/2 is about 3000 cm-1 for Ce3+ ions, which is similar to the gaps of 5S2/5F45F5 and 5I65I7 transitions of Ho3+ ions. According to the energy conservation law, the two inefficient nonradiative processes from the 5S2/5F4 and 5I6 states of Ho3+ ions are substituted in order by resonant cross relaxation (CR) processes 5S2 (5F4) (Ho3+) + 2F5/2 (Ce3+5F5 (Ho3+) + 2F7/2 (Ce3+) and 5I6 (Ho3+) + 2F5/2 (Ce3+)5I7 (Ho3+) +2F7/2 (Ce3+) between Ho3+ and Ce3+ ions. These two resonant CR processes can transfer populations from the 5S2/5F4 state and 5I6 state to the 5F5 state and its intermediate 5I7 state, respectively. The resonant modality and the strong interaction between Ho3+ and Ce3+ ions are employed to enhance the red emission and suppress the green emission. The occurrence of CR process between Ho3+ and Ce3+ ions is further proved by the down-conversion emission spectra of Ho3+ ions under 532 and 980 nm laser excitation, respectively. We demonstrate that the highly efficient red UC emission of -NaLuF4:Yb3+/Ho3+/Ce3+ nanocrystals offers opportunities as desired optical materials for color displays, anticounterfeiting techniques and multiplexed labeling applications.
      通信作者: 高伟, gaowei@xupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11604262)、陕西省教育厅项目(批准号:16JK1707)和陕西省科技新星项目(批准号:2015KJXX-40)资助的课题.
      Corresponding author: Gao Wei, gaowei@xupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11604262), the Project of Shaanxi Provincial Education Department, China (Grant No. 16JK1707), and the Shaanxi Provincial Research Plan for Young Scientific and Technological New Stars, China (Grant No. 2015KJXX-40).
    [1]

    Menyuk N, Dwight K, Pinaud F 1972 Appl. Phys. Lett. 21 159

    [2]

    Stockman M 2004 Nat. Mater. 3 423

    [3]

    Cheben P, Monte F, Worsfold D, Carlsson D, Grover C, Mackenzie J 2000 Nature 408 64

    [4]

    Rumbles G 2001 Nature 409 572

    [5]

    Huang X, Han S, Huang W, Liu X G 2013 Chem. Soc. Rev. 42 173

    [6]

    Lim M E, Lee Y L, Zhang Y, Chu J H 2012 Biomaterials 33 1912

    [7]

    Gao W, Dong J, Wang R B, Wang Z J, Zheng H R 2016 Acta Phys. Sin. 65 084205 (in Chinese)[高伟, 董军, 王瑞博, 王朝晋, 郑海荣2016物理学报65 084205]

    [8]

    Zeng S J, Xiao J J, Yang Q B, Hao J H 2012 J. Mater. Chem. 22 9870

    [9]

    Gao D L, Zheng H R, Tian Y, Lei Y, Cui M, He E J, Zhang X S 2010 Scientia Sinica Phys. Mech. Astron. 40 287 (in Chinese)[高当丽, 郑海荣, 田宇, 雷瑜, 崔敏, 何恩节, 张喜生2010中国科学:物理学力学天文学40 287]

    [10]

    Chen G Y, Ohulchanskyy T Y, Kachynski A, Ǻgren H, Prasad P N 2011 ACS Nano 5 4981

    [11]

    Ding M Y, Chen D Q, Wan Z Y, Zhou Y, Zhong J S, Xi J H, Ji Z G 2015 J. Mater. Sci. 50 6779

    [12]

    Ai Y, Tu D Y, Zheng W, Liu Y S, Kong J T, Hu P, Chen Z, Huang M D, Chen X Y 2013 Nanoscale 5 6430

    [13]

    Heer S, Kompe K, Gudel H U, Haase M 2004 Adv. Mater. 16 2102

    [14]

    Mai H X, Zhang Y W, Sun L D, Yan C H 2007 J. Phys. Chem. C 111 13721

    [15]

    Zeng S J, Xiao J J, Yang Q B, Hao J H 2012 J. Mater. Chem. 22 9870

    [16]

    Wang L L, Lan M, Liu Z Y, Qin G S, Wu C F, Wang X, Qin W P, Huang W, Huang L 2013 J. Mater. Chem. C 1 2485

    [17]

    Shi F, Wang J S, Zhai X S, Zhao D, Qin W P 2011 Cryst. Eng. Comm. 13 3782

    [18]

    Yang T S, Sun Y, Liu Q, Feng W, Yang P Y, Li F Y 2012 Biomaterials 33 3733

    [19]

    He E J, Zheng H R, Gao W, Tu Y X, Lu Y, Li G A 2013 Mater. Res. Bull. 48 3505

    [20]

    Liu Q, Sun Y, Yang T S, Feng W, Li C G, Li F Y 2011 J. Am. Chem. Soc. 133 17122

    [21]

    Boyer J C, Vetrone F, Cuccia L A, Capobianco J A 2006 J. Am. Chem. Soc. 128 7444

    [22]

    Chang J, Liu Y, Li J, Wu S L, Niu W B, Zhang S F 2013 J. Mater. Chem. C 1 1168

    [23]

    He E J, Zheng H R, Gao W, Lu Y, Li J N, Wei Y, Wang D, Zhu G Q 2013 Acta Phys. Sin. 62 237803 (in Chinese)[何恩节, 郑海荣, 高伟, 鹿盈, 李俊娜, 魏映, 王灯, 朱刚强2013物理学报62 237803]

    [24]

    Li Y, Wang G F, Pan K, Fan N Y, Liu S, Feng L 2013 RSC Adv. 3 1683

    [25]

    Deng R R, Qin F, Chen R F, Huang W, Hong M H, Liu X G 2015 Nat. Nanotech. 10 237

    [26]

    Chen G Y, Liu H C, Somesfalean G, Liang H J, Zhang Z G 2009 Nanotechnology 20 385704

    [27]

    Gao W, Zheng H R, Han Q Y, He E J, Gao F Q, Wang R B 2014 J. Mater. Chem. C 2 5327

    [28]

    Gao W, Dong J, Liu J H, Yan X W 2016 J. Lumine. 179 562

    [29]

    Zhu W, Zhao S L, Liang Z Q, Yang Y X, Zhang J J, Xu Z 2016 J. Alloy Compd. 659 146

    [30]

    Shannon R D 1976 Acta Crystallogr. A 32 751

    [31]

    Dou Q Q, Zhang Y 2011 Langmuir 27 13236

    [32]

    Gilliland G D, Powell R C 1988 Phys. Rev. B 38 9958

    [33]

    Schmidt T, Mller G, Spanhel L 1998 Chem. Mater. 10 65

    [34]

    Wang F, Liu X G 2009 Chem. Soc. Rev. 38 976

  • [1]

    Menyuk N, Dwight K, Pinaud F 1972 Appl. Phys. Lett. 21 159

    [2]

    Stockman M 2004 Nat. Mater. 3 423

    [3]

    Cheben P, Monte F, Worsfold D, Carlsson D, Grover C, Mackenzie J 2000 Nature 408 64

    [4]

    Rumbles G 2001 Nature 409 572

    [5]

    Huang X, Han S, Huang W, Liu X G 2013 Chem. Soc. Rev. 42 173

    [6]

    Lim M E, Lee Y L, Zhang Y, Chu J H 2012 Biomaterials 33 1912

    [7]

    Gao W, Dong J, Wang R B, Wang Z J, Zheng H R 2016 Acta Phys. Sin. 65 084205 (in Chinese)[高伟, 董军, 王瑞博, 王朝晋, 郑海荣2016物理学报65 084205]

    [8]

    Zeng S J, Xiao J J, Yang Q B, Hao J H 2012 J. Mater. Chem. 22 9870

    [9]

    Gao D L, Zheng H R, Tian Y, Lei Y, Cui M, He E J, Zhang X S 2010 Scientia Sinica Phys. Mech. Astron. 40 287 (in Chinese)[高当丽, 郑海荣, 田宇, 雷瑜, 崔敏, 何恩节, 张喜生2010中国科学:物理学力学天文学40 287]

    [10]

    Chen G Y, Ohulchanskyy T Y, Kachynski A, Ǻgren H, Prasad P N 2011 ACS Nano 5 4981

    [11]

    Ding M Y, Chen D Q, Wan Z Y, Zhou Y, Zhong J S, Xi J H, Ji Z G 2015 J. Mater. Sci. 50 6779

    [12]

    Ai Y, Tu D Y, Zheng W, Liu Y S, Kong J T, Hu P, Chen Z, Huang M D, Chen X Y 2013 Nanoscale 5 6430

    [13]

    Heer S, Kompe K, Gudel H U, Haase M 2004 Adv. Mater. 16 2102

    [14]

    Mai H X, Zhang Y W, Sun L D, Yan C H 2007 J. Phys. Chem. C 111 13721

    [15]

    Zeng S J, Xiao J J, Yang Q B, Hao J H 2012 J. Mater. Chem. 22 9870

    [16]

    Wang L L, Lan M, Liu Z Y, Qin G S, Wu C F, Wang X, Qin W P, Huang W, Huang L 2013 J. Mater. Chem. C 1 2485

    [17]

    Shi F, Wang J S, Zhai X S, Zhao D, Qin W P 2011 Cryst. Eng. Comm. 13 3782

    [18]

    Yang T S, Sun Y, Liu Q, Feng W, Yang P Y, Li F Y 2012 Biomaterials 33 3733

    [19]

    He E J, Zheng H R, Gao W, Tu Y X, Lu Y, Li G A 2013 Mater. Res. Bull. 48 3505

    [20]

    Liu Q, Sun Y, Yang T S, Feng W, Li C G, Li F Y 2011 J. Am. Chem. Soc. 133 17122

    [21]

    Boyer J C, Vetrone F, Cuccia L A, Capobianco J A 2006 J. Am. Chem. Soc. 128 7444

    [22]

    Chang J, Liu Y, Li J, Wu S L, Niu W B, Zhang S F 2013 J. Mater. Chem. C 1 1168

    [23]

    He E J, Zheng H R, Gao W, Lu Y, Li J N, Wei Y, Wang D, Zhu G Q 2013 Acta Phys. Sin. 62 237803 (in Chinese)[何恩节, 郑海荣, 高伟, 鹿盈, 李俊娜, 魏映, 王灯, 朱刚强2013物理学报62 237803]

    [24]

    Li Y, Wang G F, Pan K, Fan N Y, Liu S, Feng L 2013 RSC Adv. 3 1683

    [25]

    Deng R R, Qin F, Chen R F, Huang W, Hong M H, Liu X G 2015 Nat. Nanotech. 10 237

    [26]

    Chen G Y, Liu H C, Somesfalean G, Liang H J, Zhang Z G 2009 Nanotechnology 20 385704

    [27]

    Gao W, Zheng H R, Han Q Y, He E J, Gao F Q, Wang R B 2014 J. Mater. Chem. C 2 5327

    [28]

    Gao W, Dong J, Liu J H, Yan X W 2016 J. Lumine. 179 562

    [29]

    Zhu W, Zhao S L, Liang Z Q, Yang Y X, Zhang J J, Xu Z 2016 J. Alloy Compd. 659 146

    [30]

    Shannon R D 1976 Acta Crystallogr. A 32 751

    [31]

    Dou Q Q, Zhang Y 2011 Langmuir 27 13236

    [32]

    Gilliland G D, Powell R C 1988 Phys. Rev. B 38 9958

    [33]

    Schmidt T, Mller G, Spanhel L 1998 Chem. Mater. 10 65

    [34]

    Wang F, Liu X G 2009 Chem. Soc. Rev. 38 976

  • [1] 慕立鹏, 周姚, 赵建行, 王丽, 蒋礼, 周见红. 基于阳极氧化铝模板增强NaYF4:Yb3+/Er3+上转换发光研究. 物理学报, 2024, 73(3): 037803. doi: 10.7498/aps.73.20231405
    [2] 严学文, 张景蕾, 张正宇, 丁鹏, 韩庆艳, 张成云, 高伟, 董军. 单颗粒NaYbF4:2%Er3+@NaYbF4核壳微米盘的上转换红光发射增强机理. 物理学报, 2024, 73(5): 054206. doi: 10.7498/aps.73.20231663
    [3] 高伟, 骆一帆, 邢宇, 丁鹏, 陈斌辉, 韩庆艳, 严学文, 张成云, 董军. 构建NaErF4@NaYbF4:2%Er3+核壳结构增强Er3+离子红光上转换发射. 物理学报, 2023, 72(17): 174204. doi: 10.7498/aps.72.20230762
    [4] 高伟, 孙泽煜, 郭立淳, 韩珊珊, 陈斌辉, 韩庆艳, 严学文, 王勇凯, 刘继红, 董军. Ho3+离子掺杂单颗粒氟化物微米核壳结构的上转换发光特性. 物理学报, 2022, 71(3): 034207. doi: 10.7498/aps.71.20211719
    [5] 陈癸伶, 马佳佳, 孙佳石, 张金苏, 李香萍, 徐赛, 张希珍, 程丽红, 陈宝玖. 试验优化设计GdTaO4:RE/Yb(RE=Tm, Er)荧光粉制备及上转换发光特性研究. 物理学报, 2022, 71(16): 163301. doi: 10.7498/aps.71.20220474
    [6] 高伟, 孙泽煜, 郭立淳, 韩珊珊, 陈斌辉, 韩庆艳, 严学文, 王勇凯, 刘继红, 董军. Ho3+离子掺杂单颗粒氟化物微米核壳结构的上转换发光特性研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211719
    [7] 刘蓓, 陆奚建, 刘晓宁, 吴一品, 邹斌. 热注射法合成用于生物成像的核壳上转换纳米晶. 物理学报, 2020, 69(14): 147801. doi: 10.7498/aps.69.20200347
    [8] 高伟, 王博扬, 韩庆艳, 韩珊珊, 程小同, 张晨雪, 孙泽煜, 刘琳, 严学文, 王勇凯, 董军. 构建垂直金纳米棒阵列增强NaYF4:Yb3+/Er3+纳米晶体的上转换发光. 物理学报, 2020, 69(18): 184213. doi: 10.7498/aps.69.20200575
    [9] 高伟, 王博扬, 孙泽煜, 高露, 张晨雪, 韩庆艳, 董军. 改变激发环境调控Ho3+离子的上转换发光特性. 物理学报, 2020, 69(3): 034207. doi: 10.7498/aps.69.20191333
    [10] 严学文, 王朝晋, 王博扬, 孙泽煜, 张晨雪, 韩庆艳, 祁建霞, 董军, 高伟. 构建核壳结构增强Ho3+离子在镥基纳米晶中的红光上转换发射. 物理学报, 2019, 68(17): 174204. doi: 10.7498/aps.68.20190441
    [11] 高伟, 董军, 王瑞博, 王朝晋, 郑海荣. Er3+/Yb3+共掺NaYF4/LiYF4微米晶体的上转换荧光特性. 物理学报, 2016, 65(8): 084205. doi: 10.7498/aps.65.084205
    [12] 杨健芝, 邱建备, 杨正文, 宋志国, 杨勇, 周大成. Ba5SiO4Cl6: Yb3+, Er3+, Li+荧光粉的制备及上转换发光性质研究. 物理学报, 2015, 64(13): 138101. doi: 10.7498/aps.64.138101
    [13] 毛鑫光, 王俊, 沈杰. 磁控溅射制备Er3+/Yb3+共掺杂TiO2薄膜的上转换发光特性. 物理学报, 2014, 63(8): 087803. doi: 10.7498/aps.63.087803
    [14] 郑龙江, 李雅新, 刘海龙, 徐伟, 张治国. Tm3+,Yb3+共掺钨酸钙多晶材料的上转换发光及荧光温度特性. 物理学报, 2013, 62(24): 240701. doi: 10.7498/aps.62.240701
    [15] 袁宁一, 陈效双, 丁建宁, 何泽军, 李锋, 陆卫. 溶胶-凝胶制备ZnO-SiO2复合膜的量子效应和上转换发光. 物理学报, 2009, 58(4): 2649-2653. doi: 10.7498/aps.58.2649
    [16] 金 哲, 聂秋华, 徐铁峰, 戴世勋, 沈 祥, 章向华. Tm3+/Yb3+共掺碲铅锌镧玻璃的能量传递和上转换发光. 物理学报, 2007, 56(4): 2261-2267. doi: 10.7498/aps.56.2261
    [17] 温 磊, 张丽艳, 杨建虎, 汪国年, 陈 伟, 胡丽丽. 掺铒氟(卤)磷碲酸盐玻璃的上转换发光性能研究. 物理学报, 2006, 55(3): 1486-1490. doi: 10.7498/aps.55.1486
    [18] 李家成, 薛天锋, 范有余, 李顺光, 胡和方. Ce3+对Er3+/Yb3+共掺TeO2-WO3-ZnO玻璃发光性能的影响. 物理学报, 2006, 55(2): 923-928. doi: 10.7498/aps.55.923
    [19] 陈晓波, 刘凯, 庄健, 王国文, 陈创天. HoYb:YVO4的上转换发光研究. 物理学报, 2002, 51(3): 690-695. doi: 10.7498/aps.51.690
    [20] 王殿元, 谢平波, 张慰萍, 楼立人, 夏上达. 稀土离子发光体系中能量传递和迁移模型的研究. 物理学报, 2001, 50(2): 329-334. doi: 10.7498/aps.50.329
计量
  • 文章访问数:  5032
  • PDF下载量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-17
  • 修回日期:  2017-05-27
  • 刊出日期:  2017-10-05

/

返回文章
返回