搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于CARS激发源的全光纤飞秒脉冲谱压缩

江俊峰 黄灿 刘琨 张永宁 王双 张学智 马喆 陈文杰 于哲 刘铁根

引用本文:
Citation:

用于CARS激发源的全光纤飞秒脉冲谱压缩

江俊峰, 黄灿, 刘琨, 张永宁, 王双, 张学智, 马喆, 陈文杰, 于哲, 刘铁根

All-fiber spectral compression of femtosecond pulse for coherent anti-Stokes Raman scattering excitation source

Jiang Jun-Feng, Huang Can, Liu Kun, Zhang Yong-Ning, Wang Shuang, Zhang Xue-Zhi, Ma Zhe, Chen Wen-Jie, Yu Zhe, Liu Tie-Gen
PDF
导出引用
  • 进行了基于光纤预啁啾和自相位调制的多模/单模组合式全光纤啁啾谱压缩研究.提出利用多模光纤模式估计群速度色散均值的方法,并将该估计值作为啁啾参量分析的计算参数,仿真计算了50/125 m折射率渐变多模光纤的群速度色散均值及其与单模光纤在不同长度比值下的光谱压缩效果.采用三种折射率渐变多模光纤进行实验,对比分析了折射率渐变多模光纤的芯径大小及其与单模光纤的长度比值对光谱压缩效果的影响.实验结果表明使用50/125 m折射率渐变多模光纤获得光谱最大压缩比为5.796,谱宽为2.243 nm,与理论仿真一致;使用105/125 m折射率渐变多模光纤,可进一步提高压缩比至152.941,输出谱宽为0.085 nm的光脉冲.将此脉冲用于相干反斯托克斯拉曼散射光谱探测,理论光谱分辨率可达1.386 cm-1.
    Coherent anti-Stokes Raman scattering (CARS) imaging of femtosecond pulses has been a research hotspot in recent years, but the wide spectrum of the femtosecond pulse limits the spectral resolution of CARS imaging. Spectral compression is considered as an effective method to solve this problem. In this work, an all-fiber chirp spectral compression method of graded-index multi-mode fiber/single-mode fiber (GI-MMF/SMF) structure based on fiber pre-chirp and self-phase modulation is presented. It can be used as a CARS excitation source to increase the spectral resolution of CARS imaging. In the section of numerical simulation, the mean group velocity dispersion value of GI-MMF is used as a numerical parameter of the chirp analysis, which is estimated by analyzing modes of GI-MMF. On one hand, the mode field distributions in GI-MMF are simulated numerically by the finite-difference time-domain method, and these different modes are divided into eight mode groups. On the other hand, the energy proportion of each mode group is regarded as a weight value. Then we can obtain a mean group velocity dispersion value of 50/125 m GI-MMF, which is -2.28710-5 fs2/nm, by calculating the sum of group velocity dispersion weight values of mode groups. The results of spectral compression with different length ratios of 50/125 m GI-MMF to 780HP SMF are also analyzed based on the generalized nonlinear Schrdinger equation and split-step Fourier algorithm. The spectral width of 2.486 nm and the compression ratio of 5.230 are calculated, when the length ratio of 50/125 m GI-MMF to 780HP SMF is 1.2. In the section of experiment, three kinds of GI-MMFs with different core diameters are used in the experiment, the influences of the core diameter and the length ratio of GI-MMF to 780HP SMF on the spectral compression are investigated. The results show that the spectral width of 2.243 nm, corresponding to the compression ratio of 5.796 is obtained, when the length ratio of 50/125 m GI-MMF to 780HP SMF is 1.2, which is consistent with the simulation result. Under the condition of the same length ratio, the use of 105/125 m GI-MMF can raise the compression ratio to 152.941, and the spectral width of output pulse is 0.085 nm. When the pulse is applied to CARS spectrum detection, the theoretical spectral resolution can be 1.386 cm-1. The experimental results show that the spectral compression way to improve spectral resolution of CARS imaging is effective. This spectral compression system is characterized by simple structure, and high and controllable compression ratio, which provides theoretical and experimental basis for the all-fiber high spectral resolution CARS excitation source research.
      通信作者: 江俊峰, jiangjfjxu@tju.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61378043,61675152,61227011,61475114,61505139)、国家重大科学仪器设备开发专项(批准号:2013YQ030915)、天津市自然科学基金(批准号:13JCYBJC16200)和深圳市科技创新委员会项目(批准号:JCYJ20120831153904083)资助的课题.
      Corresponding author: Jiang Jun-Feng, jiangjfjxu@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61378043, 61675152, 61227011, 61475114, 61505139), the National Instrumentation Program of China (Grant No. 2013YQ030915), the Natural Science Foundation of Tianjin, China (Grant No. 13JCYBJC16200), and the Shenzhen Science and Technology Research Project, China (Grant No. JCYJ20120831153904083).
    [1]

    Xu C, Wise F W 2013 Nature Photon. 7 875

    [2]

    Saint-Jalm S, Berto P, Jullien L, Andresen E R, Rigneault H 2014 J. Raman Spectrosc. 45 515

    [3]

    Chen K, Wu T, Wei H Y, Li Y 2016 Opt. Lett. 41 2628

    [4]

    Jiang J F, Wu H, Liu K, Wang S, Huang C, Zhang X Z, Yu Z, Chen W J, Ma Z, Hui R Q, Jia W J, Liu T G 2017 Chin. J. Lasers 44 0101002 (in Chinese)[江俊峰, 吴航, 刘琨, 王双, 黄灿, 张学智, 于哲, 陈文杰, 马喆, 惠荣庆, 贾文娟, 刘铁根2017中国激光44 0101002]

    [5]

    Lamb E S, Wise F W 2015 Biomed. Opt. Express 6 3248

    [6]

    Oberthaler M, Hpfel R A 1993 Appl. Phys. Lett. 63 1017

    [7]

    Washburn B R, Buck J A, Ralph S E 2000 Opt. Lett. 25 445

    [8]

    Andresen E R, Thgersen J, Keiding S R 2005 Opt. Lett. 30 2025

    [9]

    Limpert J, Gabler T, Liem A, Zellmer H, Tnnermann A 2002 Appl. Phys. B 74 191

    [10]

    Fedotov A B, Voronin A A, Fedotov I V, Ivanov A A, Zheltikov A M 2009 Opt. Lett. 34 662

    [11]

    Nishizawa N, Takahashi K, Ozeki Y, Itoh K 2010 Opt. Express 18 11700

    [12]

    Chuang H P, Huang C B 2011 Opt. Lett. 36 2848

    [13]

    Chao W T, Lin Y Y, Peng J L, Huang C B 2014 Opt. Lett. 39 853

    [14]

    Toneyan H, Zeytunyan A, Zadoyan R, Mouradian L 2016 J. Phys. 672 012016

    [15]

    Planas S A, Pires N L, Brito C H, Fragnito H L 1993 Opt. Lett. 18 699

    [16]

    Agrawal G P 2009 Nonlinear Fiber Optics (Amsterdam:Elsevier) pp37-44, 56-57

    [17]

    Nehashi K, Koike Y 2009 Proc. SPIE 7213 721318

    [18]

    Liu Y, Rahman B M A, Ning Y N, Grattan K T V 1995 Appl. Opt. 34 1540

    [19]

    Finot C, Boscolo S 2016 J. Opt. Soc. Am. B 33 760

    [20]

    Mortimore D B, Wright J V 1986 Electron. Lett. 22 318

    [21]

    O' Brien E M, Hussey C D 1999 Electron. Lett. 35 168

    [22]

    Su L, Chiang K S, Lu C 2006 Appl. Opt. 44 7394

  • [1]

    Xu C, Wise F W 2013 Nature Photon. 7 875

    [2]

    Saint-Jalm S, Berto P, Jullien L, Andresen E R, Rigneault H 2014 J. Raman Spectrosc. 45 515

    [3]

    Chen K, Wu T, Wei H Y, Li Y 2016 Opt. Lett. 41 2628

    [4]

    Jiang J F, Wu H, Liu K, Wang S, Huang C, Zhang X Z, Yu Z, Chen W J, Ma Z, Hui R Q, Jia W J, Liu T G 2017 Chin. J. Lasers 44 0101002 (in Chinese)[江俊峰, 吴航, 刘琨, 王双, 黄灿, 张学智, 于哲, 陈文杰, 马喆, 惠荣庆, 贾文娟, 刘铁根2017中国激光44 0101002]

    [5]

    Lamb E S, Wise F W 2015 Biomed. Opt. Express 6 3248

    [6]

    Oberthaler M, Hpfel R A 1993 Appl. Phys. Lett. 63 1017

    [7]

    Washburn B R, Buck J A, Ralph S E 2000 Opt. Lett. 25 445

    [8]

    Andresen E R, Thgersen J, Keiding S R 2005 Opt. Lett. 30 2025

    [9]

    Limpert J, Gabler T, Liem A, Zellmer H, Tnnermann A 2002 Appl. Phys. B 74 191

    [10]

    Fedotov A B, Voronin A A, Fedotov I V, Ivanov A A, Zheltikov A M 2009 Opt. Lett. 34 662

    [11]

    Nishizawa N, Takahashi K, Ozeki Y, Itoh K 2010 Opt. Express 18 11700

    [12]

    Chuang H P, Huang C B 2011 Opt. Lett. 36 2848

    [13]

    Chao W T, Lin Y Y, Peng J L, Huang C B 2014 Opt. Lett. 39 853

    [14]

    Toneyan H, Zeytunyan A, Zadoyan R, Mouradian L 2016 J. Phys. 672 012016

    [15]

    Planas S A, Pires N L, Brito C H, Fragnito H L 1993 Opt. Lett. 18 699

    [16]

    Agrawal G P 2009 Nonlinear Fiber Optics (Amsterdam:Elsevier) pp37-44, 56-57

    [17]

    Nehashi K, Koike Y 2009 Proc. SPIE 7213 721318

    [18]

    Liu Y, Rahman B M A, Ning Y N, Grattan K T V 1995 Appl. Opt. 34 1540

    [19]

    Finot C, Boscolo S 2016 J. Opt. Soc. Am. B 33 760

    [20]

    Mortimore D B, Wright J V 1986 Electron. Lett. 22 318

    [21]

    O' Brien E M, Hussey C D 1999 Electron. Lett. 35 168

    [22]

    Su L, Chiang K S, Lu C 2006 Appl. Opt. 44 7394

计量
  • 文章访问数:  4494
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-24
  • 修回日期:  2017-06-08
  • 刊出日期:  2017-10-05

/

返回文章
返回