搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于三轴X射线衍射方法的n-GaN位错密度的测试条件分析

何菊生 张萌 邹继军 潘华清 齐维靖 李平

引用本文:
Citation:

基于三轴X射线衍射方法的n-GaN位错密度的测试条件分析

何菊生, 张萌, 邹继军, 潘华清, 齐维靖, 李平

Analyses of determination conditions of n-GaN dislocation density by triple-axis X-ray diffraction

He Ju-Sheng, Zhang Meng, Zou Ji-Jun, Pan Hua-Qing, Qi Wei-Jing, Li Ping
PDF
导出引用
  • 三轴X射线衍射技术广泛应用于半导体材料参数的精确测试,然而应用于纤锌矿n-GaN位错密度的测试却可能隐藏极大的误差.本文采用三轴X射线衍射技术测试了两个氢化物气相外延方法生长的n-GaN样品,发现两样品对应衍射面的半高全宽都基本一致,按照镶嵌结构模型,采用Srikant方法或Williamson-Hall方法,两样品的位错密度也应基本一致.但van der Pauw变温霍尔效应测试表明,其中的非故意掺杂样品是莫特相变材料,而掺Si样品则是非莫特相变材料,位错密度有数量级的差别.实验表明,位错沿晶界生长导致的晶粒尺寸效应,表现为三轴X射线衍射技术检测不到晶界晶格畸变区域的位错,给测试带来极大误差,这对正确使用Srikant方法和Williamson-Hall方法提出了测试要求.分析表明,当扭转角与倾转角之比twist/tilt 2.0时,Srikant方法是准确的,否则需进一步由Williamson-Hall方法确定晶粒大小(面内共格长度L//),当L// 1.5 m时,Srikant方法是准确的.
    Dislocation densities of two hydride vapor phase epitaxy-grown hexagonal GaN samples, which are Si doped and unintentionally doped respectively, are determined by triple-axis X-ray diffractometry and van der Pauw variable temperature Hall-effect measurement. The dislocation densities of these two samples should be at the same level from the X-ray testing, the -FWHM (full width at half maximum) values of all corresponding reflections for these two samples are almost the same. But from the Hall-effect measurements, the dislocation density values should be different from each other remarkably, because the unintentionally doped sample belongs to Mott transition material, while the Si-doped one does not. This fact indicates that the X-ray testing is perhaps inaccurate under some conditions, although the triple-axis X-ray diffractometry is a highly suitable technique for discriminating different kinds of structural defects such as edge and screw dislocations that lead to characteristic broadening of symmetric and asymmetric Bragg reflection. The experimental result obtained so far (say, for hot-electron bolometer) shows that the dislocation density value from mobility fitting model is in good accordance with that from -FWHM fitting using Srikant method. The anomaly that the dislocation density from -FWHM fitting is much lower than that from mobility fitting for the same sample (sample 59#), indicates that dislocations located in grain boundary may not be tested by triple-axis X-ray diffractometry. According to mosaic model, the layer is assumed to consist of single crystallites, called mosaic blocks, which are assumed to be slightly misoriented with respect to each other. The out-of-plane rotation of the block perpendicular to the surface normal is of the mosaic tilt, and the in-plane rotation around the surface normal is of the mosaic twist. The average absolute values of tilt and twist angles are directly related to the FWHM values of the corresponding distributions of crystallographic orientations. So, the X-ray testing can determine the average orientation of the grains with the same interplanar distance, excluding the information about the grain boundary at which X-ray cannot interfere because of disdortion of lattice. The experimental results and calculation analyses indicate that the dislocation density value from Srikant model is accurate when the ratio of twist angle to tilt angle exceeds 2.0, or the magnitude of the lateral coherence length is larger than 1.5 m.
      通信作者: 何菊生, Hejusheng_2004@sohu.com
    • 基金项目: 江西省自然科学基金(批准号:20151BAB207066)和南昌大学科学技术学院自然科学基金(批准号:2012-ZR-06)资助的课题.
      Corresponding author: He Ju-Sheng, Hejusheng_2004@sohu.com
    • Funds: Project supported by the Natural Science Foundation of Jiangxi Province, China (Grant No. 20151BAB207066) and the Natural Science Foundation of College of Science and Technology of Nanchang University, China (Grant No. 2012-ZR-06).
    [1]

    Sugiura L 1997 Appl. Phys. Lett. 70 1317

    [2]

    Li S, Fang Z, Chen H, Li J, Chen X, Yuan X 2006 Mater. Sci. Semicond. Process. 9 371

    [3]

    Li D S, Chen H, Yu H B, Jia H Q, Huang Q, Zhou J M 2004 J. Appl. Phys. 96 1111

    [4]

    Pomarico A A, Huang D, Dickinson J, Baski A A, Cingolani R, Morko H 2003 Appl. Phys. Lett. 82 1890

    [5]

    Li C R, Mai Z H, Hatton P D, Du C H 1993 Acta Phys. Sin. 42 1479 (in Chinese) [李超荣, 麦振洪, Hatton P D, Du C H 1993 物理学报 42 1479]

    [6]

    Srikant V, Speck J S, Clarke D R 1997 J. Appl. Phys. 82 4286

    [7]

    Williamson G K, Hall W H 1953 Acta Metall. 1 22

    [8]

    Metzger T, Hopler R, Born E, Ambacher O, Stutzmann M, Stommer R, Schuster M, Gobel H, Christiansen S, Albrecht M, Strunk H P 1998 Philos. Mag. A 77 1013

    [9]

    Xie Z L, Zhou Y J, Song L H, Liu B, Hua X M, Xiu X Q, Zhang R, Zheng Y D 2010 Sci. China: Phys. Mech. Astron. 53 68

    [10]

    Ivantsov V, Volkova A 2012 ISRN Condens. Matter Phys. 2012 184023

    [11]

    Chierchia R, Bttcher T, Heinke H, Einfeldt S, Figge S, Hommel D 2003 J. Appl. Phys. 93 8918

    [12]

    Pandey A, Yadav B S, Rao D V S, Kaur D, Kapoor A K 2016 Appl. Phys. A 122 614

    [13]

    Safriuk N V, Stanchu G V, Kuchuk A V, Kladko V P, Belyaev A E, Machulin V F 2013 Semicond. Phys., Quantum Electron. Optoelectron. 16 265

    [14]

    He J S, Zhang M, Pan H Q, Zou J J, Qi W J, Li P 2017 Acta Phys. Sin. 66 067201 (in Chinese) [何菊生, 张萌, 潘华清, 邹继军, 齐维靖, 李平 2017 物理学报 66 067201]

    [15]

    He J S, Zhang M, Pan H Q, Qi W J, Li P 2016 Acta Phys. Sin. 65 167201 (in Chinese) [何菊生, 张萌, 潘华清, 齐维靖, 李平 2016 物理学报 65 167201]

    [16]

    Moram M A, Vickers M E, Kappers M J, Humphreys C J 2008 J. Appl. Phys. 103 093528

  • [1]

    Sugiura L 1997 Appl. Phys. Lett. 70 1317

    [2]

    Li S, Fang Z, Chen H, Li J, Chen X, Yuan X 2006 Mater. Sci. Semicond. Process. 9 371

    [3]

    Li D S, Chen H, Yu H B, Jia H Q, Huang Q, Zhou J M 2004 J. Appl. Phys. 96 1111

    [4]

    Pomarico A A, Huang D, Dickinson J, Baski A A, Cingolani R, Morko H 2003 Appl. Phys. Lett. 82 1890

    [5]

    Li C R, Mai Z H, Hatton P D, Du C H 1993 Acta Phys. Sin. 42 1479 (in Chinese) [李超荣, 麦振洪, Hatton P D, Du C H 1993 物理学报 42 1479]

    [6]

    Srikant V, Speck J S, Clarke D R 1997 J. Appl. Phys. 82 4286

    [7]

    Williamson G K, Hall W H 1953 Acta Metall. 1 22

    [8]

    Metzger T, Hopler R, Born E, Ambacher O, Stutzmann M, Stommer R, Schuster M, Gobel H, Christiansen S, Albrecht M, Strunk H P 1998 Philos. Mag. A 77 1013

    [9]

    Xie Z L, Zhou Y J, Song L H, Liu B, Hua X M, Xiu X Q, Zhang R, Zheng Y D 2010 Sci. China: Phys. Mech. Astron. 53 68

    [10]

    Ivantsov V, Volkova A 2012 ISRN Condens. Matter Phys. 2012 184023

    [11]

    Chierchia R, Bttcher T, Heinke H, Einfeldt S, Figge S, Hommel D 2003 J. Appl. Phys. 93 8918

    [12]

    Pandey A, Yadav B S, Rao D V S, Kaur D, Kapoor A K 2016 Appl. Phys. A 122 614

    [13]

    Safriuk N V, Stanchu G V, Kuchuk A V, Kladko V P, Belyaev A E, Machulin V F 2013 Semicond. Phys., Quantum Electron. Optoelectron. 16 265

    [14]

    He J S, Zhang M, Pan H Q, Zou J J, Qi W J, Li P 2017 Acta Phys. Sin. 66 067201 (in Chinese) [何菊生, 张萌, 潘华清, 邹继军, 齐维靖, 李平 2017 物理学报 66 067201]

    [15]

    He J S, Zhang M, Pan H Q, Qi W J, Li P 2016 Acta Phys. Sin. 65 167201 (in Chinese) [何菊生, 张萌, 潘华清, 齐维靖, 李平 2016 物理学报 65 167201]

    [16]

    Moram M A, Vickers M E, Kappers M J, Humphreys C J 2008 J. Appl. Phys. 103 093528

  • [1] 刘庆彬, 蔚翠, 郭建超, 马孟宇, 何泽召, 周闯杰, 高学栋, 余浩, 冯志红. 多晶金刚石对硅基氮化镓材料的影响. 物理学报, 2023, 72(9): 098104. doi: 10.7498/aps.72.20221942
    [2] 陈伟龙, 郭榕榕, 仝钰申, 刘莉莉, 周圣岚, 林金海. 亚禁带光照对CdZnTe晶体中晶界电场分布的影响. 物理学报, 2022, 71(22): 226101. doi: 10.7498/aps.71.20220896
    [3] 郭灿, 赵玉平, 邓英远, 张忠明, 徐春杰. 运动晶界与调幅分解相互作用过程的相场法研究. 物理学报, 2022, 71(7): 078101. doi: 10.7498/aps.71.20211973
    [4] 雷振帅, 孙小伟, 刘子江, 宋婷, 田俊红. 氮化镓相图预测及其高压熔化特性研究. 物理学报, 2022, 71(19): 198102. doi: 10.7498/aps.71.20220510
    [5] 夏文强, 赵彦, 刘振智, 鲁晓刚. 应变诱发四方相小角度对称倾侧晶界位错反应的晶体相场模拟. 物理学报, 2022, 71(9): 096102. doi: 10.7498/aps.71.20212278
    [6] 周良付, 张婧, 何文豪, 王栋, 苏雪, 杨冬燕, 李玉红. 氦泡在bcc钨中晶界处成核长大的分子动力学模拟. 物理学报, 2020, 69(4): 046103. doi: 10.7498/aps.69.20191069
    [7] 谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜. 氮化镓在不同中子辐照环境下的位移损伤模拟研究. 物理学报, 2020, 69(19): 192401. doi: 10.7498/aps.69.20200064
    [8] 祁科武, 赵宇宏, 田晓林, 彭敦维, 孙远洋, 侯华. 取向角对小角度非对称倾斜晶界位错运动影响的晶体相场模拟. 物理学报, 2020, 69(14): 140504. doi: 10.7498/aps.69.20200133
    [9] 祁科武, 赵宇宏, 郭慧俊, 田晓林, 侯华. 温度对小角度对称倾斜晶界位错运动影响的晶体相场模拟. 物理学报, 2019, 68(17): 170504. doi: 10.7498/aps.68.20190051
    [10] 何菊生, 张萌, 潘华清, 邹继军, 齐维靖, 李平. 基于变温霍尔效应方法的一类n-GaN位错密度的测量. 物理学报, 2017, 66(6): 067201. doi: 10.7498/aps.66.067201
    [11] 何菊生, 张萌, 潘华清, 齐维靖, 李平. 一种测量纤锌矿n-GaN位错密度的新方法. 物理学报, 2016, 65(16): 167201. doi: 10.7498/aps.65.167201
    [12] 黄斌斌, 熊传兵, 汤英文, 张超宇, 黄基锋, 王光绪, 刘军林, 江风益. 硅衬底氮化镓基LED薄膜转移至柔性黏结层基板后其应力及发光性能变化的研究. 物理学报, 2015, 64(17): 177804. doi: 10.7498/aps.64.177804
    [13] 郑宗文, 徐庭栋, 王凯, 邵冲. 晶界滞弹性弛豫理论的现代进展. 物理学报, 2012, 61(24): 246202. doi: 10.7498/aps.61.246202
    [14] 王晓中, 林理彬, 何捷, 陈军. 第一性原理方法研究He掺杂Al晶界力学性质. 物理学报, 2011, 60(7): 077104. doi: 10.7498/aps.60.077104
    [15] 李水清, 汪莱, 韩彦军, 罗毅, 邓和清, 丘建生, 张洁. 氮化镓基发光二极管结构中粗化 p型氮化镓层的新型生长方法. 物理学报, 2011, 60(9): 098107. doi: 10.7498/aps.60.098107
    [16] 陈贤淼, 宋申华. 高温塑性变形引起的P非平衡晶界偏聚. 物理学报, 2009, 58(13): 183-S188. doi: 10.7498/aps.58.183
    [17] 李培刚, 雷 鸣, 唐为华, 宋朋云, 陈晋平, 李玲红. 晶界对庞磁电阻颗粒薄膜的磁学和输运性能的影响. 物理学报, 2006, 55(5): 2328-2332. doi: 10.7498/aps.55.2328
    [18] 刘乃鑫, 王怀兵, 刘建平, 牛南辉, 韩 军, 沈光地. p型氮化镓的低温生长及发光二极管器件的研究. 物理学报, 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
    [19] 刘贵立, 李荣德. ZA27合金中稀土及铁的晶界偏聚与交互作用. 物理学报, 2004, 53(10): 3482-3486. doi: 10.7498/aps.53.3482
    [20] 张 林, 王绍青, 叶恒强. 大角度Cu晶界在升温、急冷条件下晶界结构的分子动力学研究. 物理学报, 2004, 53(8): 2497-2502. doi: 10.7498/aps.53.2497
计量
  • 文章访问数:  4828
  • PDF下载量:  200
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-26
  • 修回日期:  2017-08-04
  • 刊出日期:  2017-11-05

/

返回文章
返回