搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于窄带隙聚合物的高性能可见-近红外光伏探测器

肖标 张敏莉 王洪波 刘继延

引用本文:
Citation:

基于窄带隙聚合物的高性能可见-近红外光伏探测器

肖标, 张敏莉, 王洪波, 刘继延

High performence visble-near infrared photovoltaic detector based on narrow bandgap polymer

Xiao Biao, Zhang Min-Li, Wang Hong-Bo, Liu Ji-Yan
PDF
导出引用
  • 聚合物光伏探测器是一种极具应用前景的新型光电探测器件.研究了基于窄带隙聚合物的高性能可见-近红外光伏探测器,结果表明,所制备的光伏探测器在可见至近红外光谱范围内具有宽的光谱响应(380–960 nm)、出色的响应度(840 nm时达到380 mA/W)和归一化探测度;同时,器件在暗态反偏条件下的能级示意图揭示了器件内平均电场较低是较厚光敏层器件具有低噪声电流的主要原因.电容-电压与时间周期性响应曲线研究表明聚合物光伏探测器具有快速的响应能力和良好的周期重复性.
    Polymer-based visible-near infrared photodetectors have attracted considerable attention in the recent years due to their unique advantages of low cost of fabrication, compatibility with lightweight/flexible electronics, and wide material sources. Current researches mainly focus on high performence visble-near infrared photovoltaic detector based on narrow bandgap polymer. Device structure of the photodetector is ITO/PEDOT:PSS/photosensitive layer/Ca/Al. The weak light (0.4 mW/cm2, 800 nm) and reverse bias (-2 V) induce insignificant differences in photocurrent among the devices. Current values of 1.69×10-4 A/cm2, 7.96×10-5 A/cm2 and 6.98×10-5 A/cm2 are obtained with photosensitive layer thickness values of 100, 200 and 300 nm, respectively. However, the dark current density-voltage characteristics of the detectors with various thickness values of the photosensitive layer show that reverse bias (-2 V) induces significant differences in current among the devices. Current values of 1.35×10-6 A/cm2, 1.13×10-7 A/cm2 and 2.98×10-8 A/cm2 are obtained with photosensitive layer thickness values of 100 nm, 200 nm and 300 nm, respectively. Meanwhile, all detectors possess high rectification ratios over 105(±2 V), indicating good diode rectification characteristics. Photosensitivity measurements show that detection spectral regions of the detectors are extended from 380 nm to 960 nm. The values of detectivity (D*) of detectors with various thickness values of photosensitive layers are investigated, and the obtained values of D* of tested detectors are found to be very stable in a range from 400 nm to 860 nm, and the average D* value for the 300 nm thick device in this spectral range is as high as 6.89×1012 Jones. The latter compares well with values obtained with silicon detectors. In a range from 800 nm to 900 nm, the estimated detectivities of the 300 nm and 200 nm thick detectors are slightly higher than those obtained with InGaAs devices. Through analyzing energy band diagrams of the polymer photodetectors under reverse voltage bias it could be argued that the relatively weak electric field in the thicker device is the origin of the lower noise current density. The capacitance characteristics of polymer based detectors at high frequency (100 kHz) are examined through capacitance-voltage curves, and the resulting data show that capacitances of all devices at reverse and even small positive voltage are constant. This indicates that the device photosensitive layers are fully depleted and fast signal detections are theoretically possible. The time responses of detectors under near-infrared stimulation are also examined. The output signal appears to rise and fall periodically according to the input signal, suggesting a good repeatability. The rise and fall times for the devices are recorded to be ~5 μs and ~50 μs, indicating that the polymer photodetectors have quick response capabilities.
      通信作者: 王洪波, hongbo.wang@jhun.edu.cn
    • 基金项目: 国家高技术研究发展计划(批准号:2015AA033400)、国家自然科学基金(批准号:21302232)、湖北省自然科学基金(批准号:2014CFA098)、中国博士后科学基金(批准号:2016M600567)、光电化学材料与器件教育部重点实验室(江汉大学)开放课题基金(批准号:JDGD-201608)和欧阳康乐产学研用基金资助的课题.
      Corresponding author: Wang Hong-Bo, hongbo.wang@jhun.edu.cn
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2015AA033400), the National Natural Science Foundation of China (Grant No. 21302232), Hubei Natural Science Foundation, China (Grant No. 2014CFA098), China Postdoctoral Science Foundation, China (Grant No. 2016M600567), the Opening Project of Key Laboratory of Optelectronic Chemical Materials and Devices (Jianghan University), Ministry of Education of China (Grant No. JDGD-201608) and Ouyang Kangle Innovation Fund for Production-Study-Research-Application.
    [1]

    Michel J, Liu J, Kimerling L C 2010 Nat. Photon. 4 527

    [2]

    Kahn J M, Barry J R 1997 Proc. IEEE 85 265

    [3]

    Kim S, Lim Y T, Soltesz E G, Grand A M D, Lee J, Nakayama A, Parker J A, Mihaljevic T, Laurence R G, Dor D M, Cohn L H, Bawendi M G, Frangioni J V 2004 Nat. Biotechnol. 22 93

    [4]

    Rogalski A, Chrzanowski K 2002 Opto-Electron. Rev. 10 111

    [5]

    Ettl R, Chao I, Diederich F, Whetten R L 1991 Nature 353 149

    [6]

    Baeg K J, Binda M, Natali D, Caironi M, Noh Y Y 2013 Adv. Mater. 25 4267

    [7]

    Hendriks K H, Li W, Wienk M M, Janssen R A J 2014 J. Am. Chem. Soc. 136 12130

    [8]

    Su Z, Hou F, Wang X, Gao Y, Jin F, Zhang G, Li Y, Zhang L, Chu B, Li W 2015 ACS Appl. Mater. Interfaces 7 2529

    [9]

    Gao M, Wang W, Li L, Miao J, Zhang F 2017 Chin. Phys. B 26 018201

    [10]

    Wang X, Wang H, Huang W, Yu J 2014 Org. Electron. 15 3000

    [11]

    Hu X, Dong Y, Huang F, Gong X, Cao Y 2013 J. Phys. Chem. C 117 6537

    [12]

    Gong X, Tong M, Xia Y, Cai W, Moon J S, Cao Y, Yu G, Shieh C L, Nilsson B, Heeger A J 2009 Science 325 1665

    [13]

    Lim S B, Ji C H, Oh I S, Oh S Y 2016 J. Mater. Chem.C 4 4920

    [14]

    Shafian S, Hwang H, Kim K 2016 Opt. Express 24 25308

    [15]

    Wu S, Xiao B, Zhao B, He Z, Wu H, Cao Y 2016 Small 12 3374

    [16]

    Dou L, Chang W H, Gao J, Chen C C, You J B, Yang Y 2013 Adv. Mater. 25 825

    [17]

    Eo Y S, Rhee H W, Chin B D, Yu G W 2009 Synth. Met. 159 1910

    [18]

    Xie Y, Gong M, Shastry T A, Lohrman J, Hersam M C, Ren S 2013 Adv. Mater. 25 3433

    [19]

    He C, Zhong C, Wu H, Yang R, Yang W, Huang F, Bazan G C, Cao Y 2010 J. Mater. Chem. 20 2617

    [20]

    Wang Z, Safdar M, Jiang C, He J 2012 Nano Lett. 12 4715

    [21]

    Parker I D 1994 J. Appl. Phys. 75 1656

    [22]

    Salamandra L, Susanna G, Penna S, Reale A 2011 IEEE Photon. Tech. L. 23 780

    [23]

    Wang J B, Li W L, Chu B, Lee C S, Su Z S, Zhang G, Wu S H, Yan F 2011 Org. Electron. 12 34

    [24]

    Yao Y, Liang Y, Shrotriya V, Xiao S, Yu L, Yang Y 2007 Adv. Mater. 19 3979

    [25]

    Zhou Y, Wang L, Wang J, Pei J, Cao Y 2008 Adv. Mater. 20 3745

    [26]

    Konstantatos G, Levina L, Tang J, Fisher A, Sargent E H 2008 Nano Lett. 8 1446

    [27]

    Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotech. 8 497

    [28]

    Xie X, Kwok S Y, Lu Z, Liu Y, Cao Y, Luo L, Zapien J A, Bello I, Lee C S, Lee S T, Zhang W 2012 Nanoscale 4 2914

  • [1]

    Michel J, Liu J, Kimerling L C 2010 Nat. Photon. 4 527

    [2]

    Kahn J M, Barry J R 1997 Proc. IEEE 85 265

    [3]

    Kim S, Lim Y T, Soltesz E G, Grand A M D, Lee J, Nakayama A, Parker J A, Mihaljevic T, Laurence R G, Dor D M, Cohn L H, Bawendi M G, Frangioni J V 2004 Nat. Biotechnol. 22 93

    [4]

    Rogalski A, Chrzanowski K 2002 Opto-Electron. Rev. 10 111

    [5]

    Ettl R, Chao I, Diederich F, Whetten R L 1991 Nature 353 149

    [6]

    Baeg K J, Binda M, Natali D, Caironi M, Noh Y Y 2013 Adv. Mater. 25 4267

    [7]

    Hendriks K H, Li W, Wienk M M, Janssen R A J 2014 J. Am. Chem. Soc. 136 12130

    [8]

    Su Z, Hou F, Wang X, Gao Y, Jin F, Zhang G, Li Y, Zhang L, Chu B, Li W 2015 ACS Appl. Mater. Interfaces 7 2529

    [9]

    Gao M, Wang W, Li L, Miao J, Zhang F 2017 Chin. Phys. B 26 018201

    [10]

    Wang X, Wang H, Huang W, Yu J 2014 Org. Electron. 15 3000

    [11]

    Hu X, Dong Y, Huang F, Gong X, Cao Y 2013 J. Phys. Chem. C 117 6537

    [12]

    Gong X, Tong M, Xia Y, Cai W, Moon J S, Cao Y, Yu G, Shieh C L, Nilsson B, Heeger A J 2009 Science 325 1665

    [13]

    Lim S B, Ji C H, Oh I S, Oh S Y 2016 J. Mater. Chem.C 4 4920

    [14]

    Shafian S, Hwang H, Kim K 2016 Opt. Express 24 25308

    [15]

    Wu S, Xiao B, Zhao B, He Z, Wu H, Cao Y 2016 Small 12 3374

    [16]

    Dou L, Chang W H, Gao J, Chen C C, You J B, Yang Y 2013 Adv. Mater. 25 825

    [17]

    Eo Y S, Rhee H W, Chin B D, Yu G W 2009 Synth. Met. 159 1910

    [18]

    Xie Y, Gong M, Shastry T A, Lohrman J, Hersam M C, Ren S 2013 Adv. Mater. 25 3433

    [19]

    He C, Zhong C, Wu H, Yang R, Yang W, Huang F, Bazan G C, Cao Y 2010 J. Mater. Chem. 20 2617

    [20]

    Wang Z, Safdar M, Jiang C, He J 2012 Nano Lett. 12 4715

    [21]

    Parker I D 1994 J. Appl. Phys. 75 1656

    [22]

    Salamandra L, Susanna G, Penna S, Reale A 2011 IEEE Photon. Tech. L. 23 780

    [23]

    Wang J B, Li W L, Chu B, Lee C S, Su Z S, Zhang G, Wu S H, Yan F 2011 Org. Electron. 12 34

    [24]

    Yao Y, Liang Y, Shrotriya V, Xiao S, Yu L, Yang Y 2007 Adv. Mater. 19 3979

    [25]

    Zhou Y, Wang L, Wang J, Pei J, Cao Y 2008 Adv. Mater. 20 3745

    [26]

    Konstantatos G, Levina L, Tang J, Fisher A, Sargent E H 2008 Nano Lett. 8 1446

    [27]

    Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotech. 8 497

    [28]

    Xie X, Kwok S Y, Lu Z, Liu Y, Cao Y, Luo L, Zapien J A, Bello I, Lee C S, Lee S T, Zhang W 2012 Nanoscale 4 2914

  • [1] 安涛, 薛佳伟, 王永强. 基于苯并二噻吩聚合物所制备的三元光电探测器的特性. 物理学报, 2021, 70(5): 058801. doi: 10.7498/aps.70.20201185
    [2] 严大东, 张兴华. 聚合物结晶理论进展. 物理学报, 2016, 65(18): 188201. doi: 10.7498/aps.65.188201
    [3] 段芳莉, 王明, 刘静. 摩擦导致的聚合物表层微观结构改变. 物理学报, 2015, 64(6): 066801. doi: 10.7498/aps.64.066801
    [4] 杨冰洋, 何大伟, 王永生. Bathocuproine/Ag复合电极对于聚合物光伏器件效率和稳定性的影响. 物理学报, 2015, 64(10): 108801. doi: 10.7498/aps.64.108801
    [5] 刘丽娟, 黄文彬, 刁志辉, 张桂洋, 彭增辉, 刘永刚, 宣丽. 基于聚合物支撑形貌液晶/聚合物光栅的低阈值分布反馈式激光器. 物理学报, 2014, 63(19): 194202. doi: 10.7498/aps.63.194202
    [6] 高博文, 高潮, 阙文修, 韦玮. 新型高效聚合物/富勒烯有机光伏电池研究进展. 物理学报, 2012, 61(19): 194213. doi: 10.7498/aps.61.194213
    [7] 何智兵, 阳志林, 闫建成, 宋之敏, 卢铁城. 辉光放电聚合物结构及力学性质研究. 物理学报, 2011, 60(8): 086803. doi: 10.7498/aps.60.086803
    [8] 马晨, 张保民, 张立, 马玉峰, 赵维富. 碱性品红光致聚合物薄膜的光致光衍射. 物理学报, 2010, 59(9): 6266-6272. doi: 10.7498/aps.59.6266
    [9] 史晶, 高琨, 雷杰, 解士杰. 基态非简并导电聚合物——坐标空间研究. 物理学报, 2009, 58(1): 459-464. doi: 10.7498/aps.58.459
    [10] 彭瑞祥, 陈冲, 沈薇, 王命泰, 郭颖, 耿宏伟. 非晶/结晶共混对聚合物光伏电池性能的影响. 物理学报, 2009, 58(9): 6582-6589. doi: 10.7498/aps.58.6582
    [11] 黎扬钢, 佘卫龙. 光致异构聚合物中光学空间孤子的垂直全光调控. 物理学报, 2007, 56(2): 895-901. doi: 10.7498/aps.56.895
    [12] 王义平, 陈建平, 李新碗, 周俊鹤, 沈 浩, 施长海, 张晓红, 洪建勋, 叶爱伦. 快速可调谐电光聚合物波导光栅. 物理学报, 2005, 54(10): 4782-4788. doi: 10.7498/aps.54.4782
    [13] 禹宣伊, 丁欣, 李卓, 许京军, 张光寅. 可见光红外图像转换薄膜的研究. 物理学报, 2002, 51(6): 1307-1311. doi: 10.7498/aps.51.1307
    [14] 封伟, 曹猛, 韦玮, 吴洪才, 万梅香, 吉野胜美. 有机聚合物受体给体复合体薄膜光伏电池性能研究. 物理学报, 2001, 50(6): 1157-1162. doi: 10.7498/aps.50.1157
    [15] 吴长勤, 张宇钟, 傅荣堂, 孙 鑫. 纯有机聚合物磁性的模型研究. 物理学报, 1999, 48(4): 713-720. doi: 10.7498/aps.48.713
    [16] 李景德, 曹万强, 刘俊刁, 肖忠模. 聚合物结构转变中的介电信息. 物理学报, 1998, 47(9): 1548-1554. doi: 10.7498/aps.47.1548
    [17] 李景德, 曹万强, 王勇. 聚合物慢极化的唯象理论. 物理学报, 1997, 46(5): 986-993. doi: 10.7498/aps.46.986
    [18] 凌帆, 吴长勤, 孙鑫. 基态非简并的聚合物中的晶格振动频谱. 物理学报, 1990, 39(5): 802-808. doi: 10.7498/aps.39.802
    [19] 帅志刚, 孙鑫, 傅柔励. 导电聚合物中的非线性光学效应. 物理学报, 1990, 39(3): 375-380. doi: 10.7498/aps.39.375
    [20] 郑健生. 可见光到近红外光谱范围内微小辐射物理量的测量. 物理学报, 1980, 29(3): 286-295. doi: 10.7498/aps.29.286
计量
  • 文章访问数:  5182
  • PDF下载量:  214
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-03
  • 修回日期:  2017-07-24
  • 刊出日期:  2017-11-05

/

返回文章
返回