搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海面冰层对声波的反射和散射特性

刘胜兴 李整林

引用本文:
Citation:

海面冰层对声波的反射和散射特性

刘胜兴, 李整林

Reflecting and scattering of acoustic wave from sea ices

Liu Sheng-Xing, Li Zheng-Lin
PDF
导出引用
  • 北极海面冰层复杂多变,其对声波的反射和散射严重影响冰下水声信道的传输特性,建立海面冰层的声波反射和散射模型对冰下水声通信研究具有重要意义.假设海面冰层为多层固体弹性介质且冰-水界面粗糙,满足微扰边界条件,导出声波从海水介质入射到海面冰层时相干反射系数满足的线性方程组.对相干反射系数随声波频率、掠射角、冰层厚度的变化进行数值分析.进一步引入根据散射声场功率谱密度计算散射系数的方法,改变掠射角,对冰层厚度、散射掠角对散射系数的影响进行研究.
    In order to build an efficient underwater acoustic sensor network in the Arctic Ocean environment, transmission characteristics of under-ice acoustic channels need comprehensive understanding. The reflecting and scattering of acoustic waves from sea ices have great influences on under-ice acoustic channels. Both topology and structure of sea surface ices are very complex and variable. The physical dimension, acoustic property and interface roughness of sea ices depend not only on local environment, but also on climate and formation time. Therefore, it is of great significance to develop a model of reflecting and scattering of acoustic waves from sea ices for investigating the sound propagation in the under-ice environment. Assuming that sea ices are a multi-layered elastic solid medium and the ice-water interface is rough and satisfies the boundary condition of perturbation, we develop a system of linear equations to solve the coherent reflection coefficient of the incident sound wave from water to sea ice. The coherent reflection coefficient is a function of the frequency of sound wave and incident grazing angle, and is numerically evaluated. The influences of ice thickness and ice-water interface roughness on the coherent reflection coefficient are analyzed. Furthermore, the method of calculating scattering coefficient by using the power spectrum density of the scattering field is introduced. The scattering coefficient as a function of the scattering grazing angle is numerically evaluated. The influences of ice thickness and ice-water interface roughness on scattering coefficient are analyzed. The results show that both the coherent reflection coefficient and the scattering coefficient are dependent on the frequency of acoustic wave, ice thickness and grazing angle. The coherent reflection coefficient is close to 1.0 and the scattering coefficient is less than 0.01 when incident grazing angle is less than 15°. In addition, the frequency of acoustic wave and ice thickness have weak influences on them. However, the frequency of acoustic wave and ice thickness have significant influences on the coherent reflection coefficient and the scattering coefficient when the incident grazing angle is big, say, greater than 30°. In general, the thicker the ice is, the smaller the coherent reflection coefficient and the scattering coefficient are. The coherent reflection coefficient is less than 0.18 when the ice thickness is greater than 10.0 m and the frequency of acoustic waves is greater than 2 kHz. The ice-water interface roughness has great influences on both the coherent reflection coefficient and the scattering coefficient. The rougher of the ice-water interface is, the smaller the coherent reflection coefficient is, and the bigger the scattering coefficient is.
      通信作者: 刘胜兴, liusx@xmu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:41276038)资助的课题.
      Corresponding author: Liu Sheng-Xing, liusx@xmu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41276038).
    [1]

    Li Q H, Wang N, Zhao J P, Huang H N, Yin L, Huang Y, Li Y, Xue S H, Ren X M, Li T (in Chinese)[李启虎, 王宁, 赵进平, 黄海宁, 尹力, 黄勇, 李宇, 薛山花, 任新敏, 李涛 2014 应用声学 33 471]

    [2]

    Gautier D L, Bird K J, Charpentier R R, Grantz A, Houseknecht D W, Klett T R, Moore T E, Pitman J K, Schenk C J, Schuenemeyer J H, Sorensen K, Tennyson M E, Valin Z C, Wandrey C J 2009 Science 324 1175

    [3]

    ACIA 2004 Impacts of a Warming Arctic:Arctic Climate Impact Assessment (Cambridge:Cambridge University Press)

    [4]

    Kang J C, Yan Q D, Sun B, Wen J H, Wang D L, Sun J Y, Meng G L, Kumiko G A 1999 Chin. J. Pol. Res. 11 301 (in Chinese)[康建成, 颜其德, 孙波, 温家洪, 汪大立, 孙俊英, 孟广林, Kumkko G A 1999 极地研究 11 301]

    [5]

    Mikhalevsky P N, Sagen H, Worcester P F, Baggeroer A B 2015 Arctic 68 1

    [6]

    Mikhalevsky P N, Gavrilov A N, Baggeroer A B 1999 IEEE J. Ocean. Eng. 24 183

    [7]

    Marsh H W, Mellen R H 1963 J. Acoust. Soc. Am. 35 552

    [8]

    Duckworth G, LePage K, Farrell T 2001 J. Acoust. Soc. Am. 110 747

    [9]

    LePage K, Schmidt H 1994 J. Acoust. Soc. Am. 96 1783

    [10]

    Alexander P, Duncan A, Bose N 2012 Sci. Edu. 41 250

    [11]

    Langleben M P 1970 J. Geophs. Res. 75 5243

    [12]

    Yang T C, Votaw C W 1981 J. Acoust. Soc. Am. 70 841

    [13]

    Yin J W, Du P Y, Zhu G P, Zhang M H, Han X, Zhang X, Sun H, Sheng X L (in Chinese)[殷敬伟, 杜鹏宇, 朱广平, 张明辉, 韩笑, 张晓, 孙辉, 生雪莉 2016 应用声学 35 58]

    [14]

    Jezek K C, Stanton T K, Gow A J, Lange M A 1990 J. Acouct. Soc. Am. 88 1903

    [15]

    Rothrock D A, Thorndike A S 1980 J. Acoust. Soc. Am. 85 3955

    [16]

    Diachok O I 1976 J. Acoust. Soc. Am. 59 1110

    [17]

    McCammom D F, McDamoel S T 1985 J. Acoust. Soc. Am. 77 499

    [18]

    Yew C H, Weng X 1987 J. Acoust. Soc. Am. 82 342

    [19]

    Ewing W M, Jardetzky W S, Press F 1957 Elastic Waves in Layered Media (New York:McGraw-Hill)

    [20]

    Kuperman W A, Schmidt H 1989 J. Acoust. Soc. Am. 86 1511

  • [1]

    Li Q H, Wang N, Zhao J P, Huang H N, Yin L, Huang Y, Li Y, Xue S H, Ren X M, Li T (in Chinese)[李启虎, 王宁, 赵进平, 黄海宁, 尹力, 黄勇, 李宇, 薛山花, 任新敏, 李涛 2014 应用声学 33 471]

    [2]

    Gautier D L, Bird K J, Charpentier R R, Grantz A, Houseknecht D W, Klett T R, Moore T E, Pitman J K, Schenk C J, Schuenemeyer J H, Sorensen K, Tennyson M E, Valin Z C, Wandrey C J 2009 Science 324 1175

    [3]

    ACIA 2004 Impacts of a Warming Arctic:Arctic Climate Impact Assessment (Cambridge:Cambridge University Press)

    [4]

    Kang J C, Yan Q D, Sun B, Wen J H, Wang D L, Sun J Y, Meng G L, Kumiko G A 1999 Chin. J. Pol. Res. 11 301 (in Chinese)[康建成, 颜其德, 孙波, 温家洪, 汪大立, 孙俊英, 孟广林, Kumkko G A 1999 极地研究 11 301]

    [5]

    Mikhalevsky P N, Sagen H, Worcester P F, Baggeroer A B 2015 Arctic 68 1

    [6]

    Mikhalevsky P N, Gavrilov A N, Baggeroer A B 1999 IEEE J. Ocean. Eng. 24 183

    [7]

    Marsh H W, Mellen R H 1963 J. Acoust. Soc. Am. 35 552

    [8]

    Duckworth G, LePage K, Farrell T 2001 J. Acoust. Soc. Am. 110 747

    [9]

    LePage K, Schmidt H 1994 J. Acoust. Soc. Am. 96 1783

    [10]

    Alexander P, Duncan A, Bose N 2012 Sci. Edu. 41 250

    [11]

    Langleben M P 1970 J. Geophs. Res. 75 5243

    [12]

    Yang T C, Votaw C W 1981 J. Acoust. Soc. Am. 70 841

    [13]

    Yin J W, Du P Y, Zhu G P, Zhang M H, Han X, Zhang X, Sun H, Sheng X L (in Chinese)[殷敬伟, 杜鹏宇, 朱广平, 张明辉, 韩笑, 张晓, 孙辉, 生雪莉 2016 应用声学 35 58]

    [14]

    Jezek K C, Stanton T K, Gow A J, Lange M A 1990 J. Acouct. Soc. Am. 88 1903

    [15]

    Rothrock D A, Thorndike A S 1980 J. Acoust. Soc. Am. 85 3955

    [16]

    Diachok O I 1976 J. Acoust. Soc. Am. 59 1110

    [17]

    McCammom D F, McDamoel S T 1985 J. Acoust. Soc. Am. 77 499

    [18]

    Yew C H, Weng X 1987 J. Acoust. Soc. Am. 82 342

    [19]

    Ewing W M, Jardetzky W S, Press F 1957 Elastic Waves in Layered Media (New York:McGraw-Hill)

    [20]

    Kuperman W A, Schmidt H 1989 J. Acoust. Soc. Am. 86 1511

  • [1] 刘雨, 田强, 王新艳, 关雪飞. 基于单向测量超声背散射系数的晶粒尺寸评价高效方法. 物理学报, 2024, 73(7): 074301. doi: 10.7498/aps.73.20231959
    [2] 周达仁, 卢奂采, 程相乐, McFarland D. Michael. 基于反射系数估算的半空间边界阻抗和声源直接辐射重构. 物理学报, 2022, 71(12): 124301. doi: 10.7498/aps.71.20211924
    [3] 王敬之, 马新, 项正, 顾旭东, 焦鹿怀, 雷良建, 倪彬彬. 等离子体层嘶声波对辐射带电子投掷角散射系数的多维建模. 物理学报, 2022, 71(22): 229401. doi: 10.7498/aps.71.20220655
    [4] 宋萌萌, 周前红, 孙强, 张含天, 杨薇, 董烨. 电子散射和能量分配方式对电子输运系数的影响. 物理学报, 2021, 70(13): 135101. doi: 10.7498/aps.70.20202021
    [5] 吴涛, 商景诚, 何兴道, 杨传音. 基于自发瑞利-布里渊散射的氮气体黏滞系数的测量. 物理学报, 2018, 67(7): 077801. doi: 10.7498/aps.67.20172438
    [6] 柴向旭, 李富全, 王圣来, 冯斌, 朱启华, 刘宝安, 孙洵, 许心光. 氘含量对DKDP晶体横向受激拉曼散射增益系数的影响. 物理学报, 2015, 64(3): 034213. doi: 10.7498/aps.64.034213
    [7] 张歆, 邢晓飞, 张小蓟, 周燕群, 赵顺德, 李俊威. 基于水声信道传播时延排序的分层空时信号检测. 物理学报, 2015, 64(16): 164302. doi: 10.7498/aps.64.164302
    [8] 张歆, 张小蓟, 邢晓飞, 姜丽伟. 单载波频域均衡中的水声信道频域响应与噪声估计. 物理学报, 2014, 63(19): 194304. doi: 10.7498/aps.63.194304
    [9] 陈蔚, 陈学岗, 史久林, 何兴道, 莫小凤, 刘娟. 变温条件下受激布里渊散射增益系数的实验测量. 物理学报, 2013, 62(10): 104213. doi: 10.7498/aps.62.104213
    [10] 韩冬, 陈良富, 李莘莘, 陶金花, 苏林, 邹铭敏, 范萌. 基于振动拉曼散射的差分水Ring效应系数卷积计算模型. 物理学报, 2013, 62(10): 109301. doi: 10.7498/aps.62.109301
    [11] 姜文正, 袁业立, 运华, 张彦敏. 海面微波散射场多普勒谱特性研究. 物理学报, 2012, 61(12): 124213. doi: 10.7498/aps.61.124213
    [12] 刘厚通, 陈良富, 苏林. Fernald前向积分用于机载激光雷达气溶胶后向散射系数反演的理论研究. 物理学报, 2011, 60(6): 064204. doi: 10.7498/aps.60.064204
    [13] 杨宏伟, 陈如山, 张 云. 等离子体的SO-FDTD算法和对电磁波反射系数的计算分析. 物理学报, 2006, 55(7): 3464-3469. doi: 10.7498/aps.55.3464
    [14] 杨 涓, 朱良明, 苏维仪, 毛根旺. 电磁波在磁化等离子体表面的功率反射系数计算研究. 物理学报, 2005, 54(7): 3236-3240. doi: 10.7498/aps.54.3236
    [15] 吴永全, 蒋国昌, 尤静林, 侯怀宇, 陈 辉. 硅酸盐熔体微结构单元的对称伸缩模的拉曼散射系数. 物理学报, 2005, 54(2): 961-966. doi: 10.7498/aps.54.961
    [16] 苏纬仪, 杨 涓, 魏 昆, 毛根旺, 何洪庆. 金属平板前等离子体的电磁波功率反射系数计算分析. 物理学报, 2003, 52(12): 3102-3107. doi: 10.7498/aps.52.3102
    [17] 王越, 蒋毅坚, 曾令祉, 刘玉龙, 庞玉璋, 朱恪. LBO晶体的布里渊散射与弹性和压电系数的测量. 物理学报, 1996, 45(4): 689-697. doi: 10.7498/aps.45.689
    [18] 游铭长, 张舒安. 海面漫反射率近似表示式的解析推导. 物理学报, 1994, 43(4): 683-688. doi: 10.7498/aps.43.683
    [19] 罗正明, 李泰华. 轻离子反射系数的标度公式. 物理学报, 1994, 43(1): 118-123. doi: 10.7498/aps.43.118
    [20] 潘威炎. 关于地球曲率对低频电波电离层反射系数计算的影响. 物理学报, 1981, 30(5): 661-670. doi: 10.7498/aps.30.661
计量
  • 文章访问数:  6138
  • PDF下载量:  330
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-19
  • 修回日期:  2017-08-17
  • 刊出日期:  2017-12-05

/

返回文章
返回