搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

雨滴碰击光缆后光纤应变相位调制分析

朱辉 孙小菡

引用本文:
Citation:

雨滴碰击光缆后光纤应变相位调制分析

朱辉, 孙小菡

Phase modulation analysis for optical fiber strain caused by raindrop collision

Zhu Hui, Sun Xiao-Han
PDF
导出引用
  • 基于云动力学理论,分析了雨滴碰击光缆后径向应变导致光纤纤芯折射率及形状发生改变,使光纤内传输光相位受到调制的过程.建立了雨滴碰击光缆引起光纤内传输光相位调制的模型,获得了降雨强度与相位调制之间的关系.研制了雨滴碰击光缆相位调制实验室验证系统,对比了模拟降雨强度分别为3,5,7,10,15,18,22,30 mm/h时的实验测试与仿真结果,两者变化趋势一致,误差在9%以内.该模型可用于仿真获得不同降雨强度下雨滴碰击光缆引起的光相位调制,为进一步研究降雨对光纤振动传感系统性能的影响,优化光纤振动传感工程应用系统,提出可行的雨量补偿方案提供了理论参考.
    Optical fiber vibration sensing technology is based on the phase modulation of the transmitted light caused by the external vibration to achieve vibration measurement. A lot of researches have reported a variety of schemes for optical fiber vibration sensing and set up several application systems, achieving the functions of oil field safety monitoring, perimeter security, pipeline safety monitoring, etc. The phase modulation caused by raindrops is mixed with the sensing signal, however, when the sensing fiber cable is exposed to the atmospheric environment and the rainfall directly acts on the sensing cable. It is difficult to distinguish the valid signal which can cause the false alarms, which thereby seriously affects the normal operation of the sensing system. To our knowledge, to date, there has been no report on the phase modulation of the transmitted light in the optical fiber caused by raindrops. Based on the theory of cloud dynamics, the transformations of refractive index and shape in the core of optical fiber and the phase modulation of light caused by raindrop collision with optical fiber cable are analyzed. The model of optical phase modulation caused by raindrop collision with optical fiber cable is established, and the relationship between phase modulation and rainfall intensity is obtained. With the increase of rainfall intensity, the phase modulation increases. When the length of the optical fiber cable is fixed, the larger the cable diameter, the larger the phase modulation is. The larger the length of the cable, the greater the phase modulation is, with the cable diameter fixed. The phase modulation caused by raindrops has a positive correlation with the cable diameter and the cable length, which is related to the rainfall intensity received on the cable surface, and increases monotonically with the rainfall intensity. A laboratory verification system for phase modulation caused by raindrop collision with optical fiber cable is established, and the relationship between the phase modulation caused by raindrops and the output signal is obtained. The experimental results are compared with the simulation results at the rainfall intensities of 3, 5, 7, 10, 15, 18, 22, and 30 mm/h. The experimental and simulated results are consistent with each other under different rainfall intensities and the error is less than 9%. The results show that the model can be used to simulate the phase modulation caused by rainfall under different rainfall intensities. It provides a theoretical basis for studying the effect of rainfall on the vibration sensing system, based on which the application system can be optimized and the feasible rainfall compensation scheme can be found.
      通信作者: 孙小菡, xhsun@seu.edu.cn
      Corresponding author: Sun Xiao-Han, xhsun@seu.edu.cn
    [1]

    Taylor H F, Lee C E 1993 US Patent 5194847[1993-03-16]

    [2]

    Choi K N, Taylor H F 2003 IEEE Photon. Technol. Lett. 15 386

    [3]

    Juarez J C, Maier E W, Choi K N, Taylor H F 2005 J. Lightw. Technol. 23 2081

    [4]

    Kurmer J P, Kingsley S A, Laudo J S, Krak S J 1992 SPIE Distributed and Multiplexed Fiber Optic Sensors San Francisco, USA, January 29-31,1992 p117

    [5]

    Wan K T, Leung C K Y 2007 Sens. Actuators A 135 458

    [6]

    Tan J, Chen W M, Zhu Y, Wang D 2006 Acta Photonica Sinica 35 228 (in Chinese)[谭靖, 陈伟民, 朱永, 王丁 2006 光子学报 35 228]

    [7]

    Hu Z X, Zhang G L, He J, Zhang L, Zhou J X 2003 Journal of Transducer Technology 22 48 (in Chinese)[胡志新, 张桂莲, 何巨, 张陵, 周进雄 2003 传感器技术 22 48]

    [8]

    Mahmoud S S, Katsifolis J 2009 SPIE Defense, Security, and Sensing Orlando, USA, April 14-16, 2009 p731604

    [9]

    Zhu H, Pan C, Sun X 2014 SPIE Sensing Technology and Applications Baltimore, USA, May 5-9, 2014 p91130F

    [10]

    Robert A, Houze J 2014 Cloud Dynamics (2nd Ed.) (Philadelphia: Academic Press) pp47-53

    [11]

    https://wenku.baidu.com/view/ca52ef4b0b4c2e3f572763cf.html[2017-08-31]

    [12]

    Laws J O 1941 Earth. Space Sci. 22 709

    [13]

    Gunn R, Kinzer G D 1949 J. Meteor. 6 243

    [14]

    Atlas D, Srivastava R C, Sekhon R S 1973 Rev. Geophys. 11 1

    [15]

    Ulbrich C W 1983 J. Climate Appl. Meteor. 22 1764

    [16]

    Marshall J S, Palmer W M K 1948 J. Meteor. 5 165

    [17]

    Hall R L, Calder I R 1993 J. Geophy. Res. 98 18465

    [18]

    Fu X, Li H N, Yang Y B 2015 J. Wind Eng. Ind. Aerod. 147 85

    [19]

    Li R, Ninokata H, Mori M 2011 Prog. Nucl. Energ. 53 881

    [20]

    Mitchell B R, Nassiri A, Locke M R, Klewicki J C, Korkolis Y P, Kinsey B L 2016 ASME 11th International Manufacturing Science and Engineering Conference Phoenix, USA, November 13-16, 2016 pV001T02A047

    [21]

    Li J, Zhang B, Guo P, Lv Q 2014 J. Appl. Phys. 116 214903

    [22]

    Hocker G B 1979 Appl. Opt. 18 1445

    [23]

    Hoffman P R, Kuzyk M G 2004 J. Lightw. Technol. 22 494

  • [1]

    Taylor H F, Lee C E 1993 US Patent 5194847[1993-03-16]

    [2]

    Choi K N, Taylor H F 2003 IEEE Photon. Technol. Lett. 15 386

    [3]

    Juarez J C, Maier E W, Choi K N, Taylor H F 2005 J. Lightw. Technol. 23 2081

    [4]

    Kurmer J P, Kingsley S A, Laudo J S, Krak S J 1992 SPIE Distributed and Multiplexed Fiber Optic Sensors San Francisco, USA, January 29-31,1992 p117

    [5]

    Wan K T, Leung C K Y 2007 Sens. Actuators A 135 458

    [6]

    Tan J, Chen W M, Zhu Y, Wang D 2006 Acta Photonica Sinica 35 228 (in Chinese)[谭靖, 陈伟民, 朱永, 王丁 2006 光子学报 35 228]

    [7]

    Hu Z X, Zhang G L, He J, Zhang L, Zhou J X 2003 Journal of Transducer Technology 22 48 (in Chinese)[胡志新, 张桂莲, 何巨, 张陵, 周进雄 2003 传感器技术 22 48]

    [8]

    Mahmoud S S, Katsifolis J 2009 SPIE Defense, Security, and Sensing Orlando, USA, April 14-16, 2009 p731604

    [9]

    Zhu H, Pan C, Sun X 2014 SPIE Sensing Technology and Applications Baltimore, USA, May 5-9, 2014 p91130F

    [10]

    Robert A, Houze J 2014 Cloud Dynamics (2nd Ed.) (Philadelphia: Academic Press) pp47-53

    [11]

    https://wenku.baidu.com/view/ca52ef4b0b4c2e3f572763cf.html[2017-08-31]

    [12]

    Laws J O 1941 Earth. Space Sci. 22 709

    [13]

    Gunn R, Kinzer G D 1949 J. Meteor. 6 243

    [14]

    Atlas D, Srivastava R C, Sekhon R S 1973 Rev. Geophys. 11 1

    [15]

    Ulbrich C W 1983 J. Climate Appl. Meteor. 22 1764

    [16]

    Marshall J S, Palmer W M K 1948 J. Meteor. 5 165

    [17]

    Hall R L, Calder I R 1993 J. Geophy. Res. 98 18465

    [18]

    Fu X, Li H N, Yang Y B 2015 J. Wind Eng. Ind. Aerod. 147 85

    [19]

    Li R, Ninokata H, Mori M 2011 Prog. Nucl. Energ. 53 881

    [20]

    Mitchell B R, Nassiri A, Locke M R, Klewicki J C, Korkolis Y P, Kinsey B L 2016 ASME 11th International Manufacturing Science and Engineering Conference Phoenix, USA, November 13-16, 2016 pV001T02A047

    [21]

    Li J, Zhang B, Guo P, Lv Q 2014 J. Appl. Phys. 116 214903

    [22]

    Hocker G B 1979 Appl. Opt. 18 1445

    [23]

    Hoffman P R, Kuzyk M G 2004 J. Lightw. Technol. 22 494

  • [1] 周勇. F+CHD3→HF+CD3反应C-H伸缩振动激发的量子动力学研究. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231832
    [2] 方捻, 钱若兰, 王帅. 基于偏振动力学的全光储备池计算系统. 物理学报, 2023, 72(21): 214205. doi: 10.7498/aps.72.20230722
    [3] 张令春, 姜海明, 张俊喜, 谢康. 局部异常因子优化的椭圆拟合算法及其在光纤振动传感相位解调中的应用. 物理学报, 2022, 71(19): 194206. doi: 10.7498/aps.71.20220401
    [4] 宁辉, 王凯程, 王少萌, 宫玉彬. 强场太赫兹波作用下氢气分子振动动力学研究. 物理学报, 2021, 70(24): 243101. doi: 10.7498/aps.70.20211482
    [5] 秦立振, 张振宇, 张坤, 丁建桥, 段智勇, 苏宇锋. 抗磁悬浮振动能量采集器动力学响应的仿真分析. 物理学报, 2018, 67(1): 018501. doi: 10.7498/aps.67.20171551
    [6] 戴伟, 刘清惓, 杨杰, 宿恺峰, 韩上邦, 施佳驰. 探空温度传感器的计算流体动力学分析与实验研究. 物理学报, 2016, 65(11): 114701. doi: 10.7498/aps.65.114701
    [7] 石俊凯, 柴路, 赵晓薇, 李江, 刘博文, 胡明列, 栗岩锋, 王清月. 光子晶体光纤飞秒激光非线性放大系统的耦合动力学过程研究. 物理学报, 2015, 64(9): 094203. doi: 10.7498/aps.64.094203
    [8] 范剑, 赵文礼, 张明路, 檀润华, 王万强. 随机共振动力学机理及其微弱信号检测方法的研究. 物理学报, 2014, 63(11): 110506. doi: 10.7498/aps.63.110506
    [9] 周恒为, 刘君, 雷婷, 黄以能. 液态簧振动力学谱在蛋白质水凝胶脱水变性过程的应用研究. 物理学报, 2013, 62(7): 076203. doi: 10.7498/aps.62.076203
    [10] 丁虎, 严巧赟, 陈立群. 轴向加速运动黏弹性梁受迫振动中的混沌动力学. 物理学报, 2013, 62(20): 200502. doi: 10.7498/aps.62.200502
    [11] 王爱星, 刘义保, 房超. HOCl分子高激发振动态的动力学势研究. 物理学报, 2012, 61(5): 053102. doi: 10.7498/aps.61.053102
    [12] 胡耀垓, 赵正予, 张援农. 电离层钡云释放早期动力学行为的数值模拟. 物理学报, 2012, 61(8): 089401. doi: 10.7498/aps.61.089401
    [13] 马成举, 任立勇, 唐峰, 屈恩世, 徐金涛, 梁权, 王舰, 韩旭. 基于分布式光纤Bragg光栅传感技术的光缆卷盘静态压力研究. 物理学报, 2012, 61(5): 054702. doi: 10.7498/aps.61.054702
    [14] 冯海冉, 李鹏, 郑雨军, 丁世良. 用李代数方法解析研究线性三原子分子振动的动力学纠缠. 物理学报, 2010, 59(8): 5246-5250. doi: 10.7498/aps.59.5246
    [15] 周恒为, 张晋鲁, 黄以能, 应学农, 张 亮, 吴文惠, 沈异凡. 邻苯二甲酸二甲酯系材料的液态簧振动力学谱测量. 物理学报, 2007, 56(11): 6547-6551. doi: 10.7498/aps.56.6547
    [16] 孙琪真, 刘德明, 王 健. 基于环结构的新型分布式光纤振动传感系统. 物理学报, 2007, 56(10): 5903-5908. doi: 10.7498/aps.56.5903
    [17] 乔学光, 贾振安, 傅海威, 李 明, 周 红. 光纤光栅温度传感理论与实验. 物理学报, 2004, 53(2): 494-497. doi: 10.7498/aps.53.494
    [18] 郑敦胜, 吴国祯. 分子高激发振动态的动力学特性研究. 物理学报, 2002, 51(10): 2229-2232. doi: 10.7498/aps.51.2229
    [19] 郑雨军, 丁世良. 动力学对称群方法对三原子分子高激发振动态的理论研究. 物理学报, 1999, 48(3): 438-445. doi: 10.7498/aps.48.438
    [20] 徐积仁, 黄南堂, 蒋义枫, 傅广生, 吴振球. 强红外场作用下BCl3振动态传能动力学研究. 物理学报, 1983, 32(7): 854-866. doi: 10.7498/aps.32.854
计量
  • 文章访问数:  4372
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-22
  • 修回日期:  2017-09-02
  • 刊出日期:  2019-01-20

/

返回文章
返回