搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外场对分子纳米结电流-电压特性的影响

牛璐 王鹿霞

引用本文:
Citation:

外场对分子纳米结电流-电压特性的影响

牛璐, 王鹿霞

Effect of external field on the I-V characteristics through the molecular nano-junction

Niu Lu, Wang Lu-Xia
PDF
导出引用
  • 针对由金属电极/分子/金属电极组成的分子纳米结,应用扩展主方程的方法,考虑分子纳米结中影响其传输过程的外场、分子内的弛豫过程等因素研究了在外场作用下分子纳米结内的稳定电流和瞬间电流.由于分子内较强的电子-振动耦合,分子纳米结中的电流-电压曲线呈现台阶式非弹性特征.在不同的高斯型脉冲的激发作用下,分子纳米结中电流需要达到稳定的时间也不相同,脉冲宽度在1 ps时瞬间电流现象明显,这时分子处于非平衡分布,分子两端的电流存在较大差异.随着脉冲宽度和外场偏压的增加,分子两端的电流趋于平衡.
    As a basic functional unit of molecular electronics, the structure of single molecule sandwiched between nano-electrodes has attracted a lot of interest in molecular science, in particular, its current-voltage (I-V) characteristic induced by an external field. Aiming at the molecular nano-junction which is composed of lead/molecule/lead, we use the method of extended master equation to compute the steady and transient current in the molecular nano-junction under the action of an externally applied electric field. The current can be adjusted by the external field, the relaxation in the molecule, the intra-molecular vibrational energy redistribution, etc. Owing to the strong electronic-vibrational coupling, the I-V curve has an inelastic characteristic in the molecular nano-junction and the stable current increases stepwise with the applied bias voltage increasing. The Franck-Condon blockage can be effectively removed by the external field. The molecular nano-junction being excited by different-width Gaussian pulses, the currents in the molecular nano-junction take different times to reach their steady state. The pulse width has a strong effect on the transient current enhancement. The transient current appears obviously for the 1 ps width pulse excitation. In this case the molecule is at a non-equilibrium state and the currents at both ends of the molecule are different. With the pulse width and the applied voltage increasing, the current through the molecular nano-junction tends to be balanced.
      通信作者: 王鹿霞, luxiawang@sas.ustb.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11774026)资助的课题.
      Corresponding author: Wang Lu-Xia, luxiawang@sas.ustb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11774026).
    [1]

    Gupta C, Shannon M A, Kenis P J A 2009 J. Phys. Chem. C 113 4687

    [2]

    Gupta C, Shannon M A, Kenis P J A 2009 J. Phys. Chem. C 113 9375

    [3]

    van der Molen S J, Liao J, Kudernac T, Agustsson J S, Bernard L, Calame M, van Wees B J, Feringa B L, Schoanenberger C 2009 Nano Lett. 9 76

    [4]

    Long M, Chen K Q, Wang L, Qing W, Zou B S, Shuai Z 2008 Appl. Phys. Lett. 92 215

    [5]

    Fan Z, Chen K 2010 Appl. Phys. Lett. 96 053509

    [6]

    Fan Z Q, Zhang Z H, Deng X Q, Tang G P, Chen K Q 2013 Appl. Phys. Lett. 102 013113

    [7]

    Zeng J, Chen K Q 2014 Appl. Phys. Lett. 104 033104

    [8]

    Yaswant V, Kumar A, Sambandan 2016 Appl. Phys. Lett. 109 024101

    [9]

    Fan Z Q, Zhang Z H, Deng X Q, Tang G P, Yang C H, Sun L, Zhu H L 2016 Carbon 98 179

    [10]

    Zeng J, Xie F, Chen K Q 2016 Carbon 98 607

    [11]

    Ying H, Zhou W X, Chen K Q, Zhou G 2014 Comp. Mater. Sci. 82 33

    [12]

    Mii T, Tikhodeev S G, Ueba H 2003 Phys. Rev. B 68 205406

    [13]

    Galperin M, Nitzan A, Ratner M A 2006 Phys. Rev. B 73 045314

    [14]

    Harbola U, Esposito M, Mukamel S 2006 Phys. Rev. B 74 4070

    [15]

    May V, Khn O I V 2006 Chem. Phys. Lett. 420 192

    [16]

    Joachim C, Ratner M A 2005 Proc. Natl. Acad. Sci. USA 102 8801

    [17]

    Qiu X H, Nazin G V, Ho W 2004 Phys. Rev. Lett. 92 206102

    [18]

    Liu S, Nurbawono A, Zhang C 2015 Sci. Rep. 5 15386

    [19]

    Kaun C C, Seideman T 2005 Phys. Rev. Lett. 94 226801

    [20]

    Xia C J, Fang C F, Hu G C, Li D M, Liu D S, Xie S J 2007 Acta Phys. Sin. 56 4884 (in Chinese)[夏蔡娟, 房常峰, 胡贵超, 李冬梅, 刘德胜, 解士杰 2007 物理学报 56 4884]

    [21]

    Derosa P A, Seminario J M 2001 J. Phys. Chem. B 105 471

    [22]

    Emberly E G, Kirczenow G 2003 Phys. Rev. Lett. 91 188301

    [23]

    Zhang C, Du M H, Cheng H P, Zhang X G, Roitberg A E 2004 Phys. Rev. Lett. 92 158301

    [24]

    Pati R, Karna S P 2004 Phys. Rev. B 69 155419

    [25]

    May V, Kuehn O 2008 Phys. Rev. B 77 115440

    [26]

    May V, Kuehn O 2008 Phys. Rev. B 77 115439

    [27]

    Wang L X, May V 2011 Chem. Chem. Phys. 13 8755

    [28]

    Dulic D, van der Molen S J, Kudernac T, Jonkman H T, de Jong J J D, Bowden T N, van Esch J, Feringa B L, van Wees B J 2003 Phys. Rev. Lett. 91 207402

    [29]

    Galperin M, Nitzan A 2005 Phys. Rev. Lett. 95 206802

    [30]

    Flaxer E, Sneh O, Cheshnovsky O 1993 Science 262 2012

    [31]

    Berndt R, Gaisch R, Gimzewski J K, Reihi B, Schlittler R R 1993 Science 262 1425

    [32]

    Qiu X H, Nazin G V, Ho W 2003 Science 299 542

  • [1]

    Gupta C, Shannon M A, Kenis P J A 2009 J. Phys. Chem. C 113 4687

    [2]

    Gupta C, Shannon M A, Kenis P J A 2009 J. Phys. Chem. C 113 9375

    [3]

    van der Molen S J, Liao J, Kudernac T, Agustsson J S, Bernard L, Calame M, van Wees B J, Feringa B L, Schoanenberger C 2009 Nano Lett. 9 76

    [4]

    Long M, Chen K Q, Wang L, Qing W, Zou B S, Shuai Z 2008 Appl. Phys. Lett. 92 215

    [5]

    Fan Z, Chen K 2010 Appl. Phys. Lett. 96 053509

    [6]

    Fan Z Q, Zhang Z H, Deng X Q, Tang G P, Chen K Q 2013 Appl. Phys. Lett. 102 013113

    [7]

    Zeng J, Chen K Q 2014 Appl. Phys. Lett. 104 033104

    [8]

    Yaswant V, Kumar A, Sambandan 2016 Appl. Phys. Lett. 109 024101

    [9]

    Fan Z Q, Zhang Z H, Deng X Q, Tang G P, Yang C H, Sun L, Zhu H L 2016 Carbon 98 179

    [10]

    Zeng J, Xie F, Chen K Q 2016 Carbon 98 607

    [11]

    Ying H, Zhou W X, Chen K Q, Zhou G 2014 Comp. Mater. Sci. 82 33

    [12]

    Mii T, Tikhodeev S G, Ueba H 2003 Phys. Rev. B 68 205406

    [13]

    Galperin M, Nitzan A, Ratner M A 2006 Phys. Rev. B 73 045314

    [14]

    Harbola U, Esposito M, Mukamel S 2006 Phys. Rev. B 74 4070

    [15]

    May V, Khn O I V 2006 Chem. Phys. Lett. 420 192

    [16]

    Joachim C, Ratner M A 2005 Proc. Natl. Acad. Sci. USA 102 8801

    [17]

    Qiu X H, Nazin G V, Ho W 2004 Phys. Rev. Lett. 92 206102

    [18]

    Liu S, Nurbawono A, Zhang C 2015 Sci. Rep. 5 15386

    [19]

    Kaun C C, Seideman T 2005 Phys. Rev. Lett. 94 226801

    [20]

    Xia C J, Fang C F, Hu G C, Li D M, Liu D S, Xie S J 2007 Acta Phys. Sin. 56 4884 (in Chinese)[夏蔡娟, 房常峰, 胡贵超, 李冬梅, 刘德胜, 解士杰 2007 物理学报 56 4884]

    [21]

    Derosa P A, Seminario J M 2001 J. Phys. Chem. B 105 471

    [22]

    Emberly E G, Kirczenow G 2003 Phys. Rev. Lett. 91 188301

    [23]

    Zhang C, Du M H, Cheng H P, Zhang X G, Roitberg A E 2004 Phys. Rev. Lett. 92 158301

    [24]

    Pati R, Karna S P 2004 Phys. Rev. B 69 155419

    [25]

    May V, Kuehn O 2008 Phys. Rev. B 77 115440

    [26]

    May V, Kuehn O 2008 Phys. Rev. B 77 115439

    [27]

    Wang L X, May V 2011 Chem. Chem. Phys. 13 8755

    [28]

    Dulic D, van der Molen S J, Kudernac T, Jonkman H T, de Jong J J D, Bowden T N, van Esch J, Feringa B L, van Wees B J 2003 Phys. Rev. Lett. 91 207402

    [29]

    Galperin M, Nitzan A 2005 Phys. Rev. Lett. 95 206802

    [30]

    Flaxer E, Sneh O, Cheshnovsky O 1993 Science 262 2012

    [31]

    Berndt R, Gaisch R, Gimzewski J K, Reihi B, Schlittler R R 1993 Science 262 1425

    [32]

    Qiu X H, Nazin G V, Ho W 2003 Science 299 542

  • [1] 韦芊屹, 倪洁蕾, 李灵, 张聿全, 袁小聪, 闵长俊. 超高时空分辨显微成像技术研究进展. 物理学报, 2023, 72(17): 178701. doi: 10.7498/aps.72.20230733
    [2] 沈星晨, 刘洋, 陈淇, 吕航, 徐海峰. 超快强激光场中原子分子的里德伯态激发. 物理学报, 2022, 71(23): 233202. doi: 10.7498/aps.71.20221258
    [3] 汪洋, 刘煜, 吴成印. 固体高次谐波产生、调控及应用. 物理学报, 2022, 71(23): 234205. doi: 10.7498/aps.71.20221319
    [4] 李伟, 王逍, 洪义麟, 曾小明, 母杰, 胡必龙, 左言磊, 吴朝辉, 王晓东, 李钊历, 粟敬钦. 基于空谱干涉和频域分割的超快激光时空耦合特性的单次测量方法. 物理学报, 2022, 71(3): 034203. doi: 10.7498/aps.71.20211665
    [5] 龙天洋, 李伟, 许浩天, 王逍. 时空耦合畸变对超快超强激光参数测试及性能评估的影响. 物理学报, 2022, 71(17): 174204. doi: 10.7498/aps.71.20220563
    [6] 李伟, 王逍, 洪义麟, 曾小明, 母杰, 胡必龙, 左言磊, 吴朝辉, 王晓东, 李钊历, 粟敬钦. 基于空谱干涉和频域分割的超快激光时空耦合特性的单次测量方法. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211665
    [7] 龙慧, 胡建伟, 吴福根, 董华锋. 基于二维材料异质结可饱和吸收体的超快激光器. 物理学报, 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [8] 王聪, 刘杰, 张晗. 基于二维纳米材料的超快脉冲激光器. 物理学报, 2019, 68(18): 188101. doi: 10.7498/aps.68.20190751
    [9] 杨超, 顾澄琳, 刘洋, 王超, 李江, 李文雪. 双重复频率锁模Yb:YAG陶瓷激光器. 物理学报, 2018, 67(9): 094206. doi: 10.7498/aps.67.20172345
    [10] 王胭脂, 邵建达, 易葵, 齐红基, 王玎, 冷雨欣. 宽带啁啾镜对的设计和制备. 物理学报, 2013, 62(20): 204207. doi: 10.7498/aps.62.204207
    [11] 杨盈莹, 张永亮, 赵震声, 段宣明. 双金属纳米天线在少周期激光中的宽带超快电磁响应. 物理学报, 2012, 61(1): 014207. doi: 10.7498/aps.61.014207
    [12] 李春, 张少斌, 金蔚, Georgios Lefkidis, Wolfgang Hübner. 线性磁性分子离子中由激光诱导的超快自旋转移. 物理学报, 2012, 61(17): 177502. doi: 10.7498/aps.61.177502
    [13] 朱丽丹, 孙方远, 祝捷, 唐大伟. 飞秒激光抽运探测热反射法对金属纳米薄膜超快非平衡传热的研究. 物理学报, 2012, 61(13): 134402. doi: 10.7498/aps.61.134402
    [14] 刘华刚, 黄见洪, 翁文, 李锦辉, 郑晖, 戴殊韬, 赵显, 王继扬, 林文雄. 高功率全正色散锁模掺Yb3+双包层光纤飞秒激光器. 物理学报, 2012, 61(15): 154210. doi: 10.7498/aps.61.154210
    [15] 牛海亮, 章岳光, 沈伟东, 余鹏, 李旸晖, 刘旭. 飞秒激光器中超宽带色散补偿啁啾镜对的设计. 物理学报, 2012, 61(1): 014211. doi: 10.7498/aps.61.014211
    [16] 李春, 杨帆, Georgios Lefkidis, Wolfgang Hübner. 磁性纳米结构中由激光引起的超快自旋动力学研究. 物理学报, 2011, 60(1): 017802. doi: 10.7498/aps.60.017802
    [17] 邓玉强, 孙青, 于靖. 光学元件群延迟的直接测量. 物理学报, 2011, 60(2): 028102. doi: 10.7498/aps.60.028102
    [18] 张元, 王鹿霞. 红外光激发作用下分子导电纳米结的非弹性电流研究. 物理学报, 2011, 60(4): 047304. doi: 10.7498/aps.60.047304
    [19] 张元, 王鹿霞. 金属电极与分子中非弹性电流的理论研究. 物理学报, 2010, 59(8): 5412-5417. doi: 10.7498/aps.59.5412
    [20] 吴义华, 王振彦, 沈瑞. 超导隧道结中的电流相位关系. 物理学报, 2009, 58(12): 8591-8595. doi: 10.7498/aps.58.8591
计量
  • 文章访问数:  4499
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-12
  • 修回日期:  2017-10-20
  • 刊出日期:  2019-01-20

/

返回文章
返回