搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维情况下两组分带电囊泡形变耦合相分离的理论模拟研究

段华 李剑锋 张红东

引用本文:
Citation:

二维情况下两组分带电囊泡形变耦合相分离的理论模拟研究

段华, 李剑锋, 张红东

Theoretical simulations of deformation coupling with phase separation of two-component charged vesicles in a two-dimensional plane

Duan Hua, Li Jian-Feng, Zhang Hong-Dong
PDF
导出引用
  • 结合离散空间变分方法和耗散动力学研究了二维两组分带电囊泡的形变耦合相分离,系统地考察了囊泡带电量组分含量、带电组分的电荷密度、两组分间的相容性和温度等因素对形变耦合相分离动力学的影响.模拟结果表明电荷引入可增加不同组分间的表观相溶性.当温度较高时,静电相互作用可直接抑制囊泡相分离,避免了同种组分的团聚;当温度较低时,静电相互作用则可明显增加分相相区数目,使其呈微观相分离,从而避免了同种组分大范围的团聚.
    The real bio-membranes are of multi-component, and they usually carry a certain quantity of charges. Therefore, it is of great biological significance to study charged multicomponent vesicles. However, the charged multi-component vesicles have been not yet systematically studied due mainly to the following two reasons: first, there are too many factors that will influence the behaviors of charged multi-component vesicles; second, theoretically it is difficult to deal with the phase separation of the multiple components from the Coulomb interaction of charged components at the same time. This work shows that the combination of the discrete-spatial variational method and dissipative dynamics can be used to address the above issues. For simplicity, we will consider only the deformation coupled with the phase separation of two-component charged vesicles in a two-dimensional plane rather than in three-dimensional space, which can present us more systematic research results. Besides, we have not considered the screening effects of counter ions or salts in this work, or equivalently we consider only the case where the screening length is relatively big. The charged vesicle is composed of two components A and B, where component A is negatively charged while component B is neutral. In particular, the charges on the vesicle can freely move in the membrane, which may be described by a time-dependent Ginzburg Landau equation. Initially, the two components are uniformly distributed on the vesicle.In this work, we specially focus on the influence of the electrostatic interaction on the compatibility of different components. It is found that introduction of charges will promote the apparent miscibility between different components. This could explain that the electrostatic interactions may contribute to the increase of the compatibility of different biomolecules in biological system. When temperature is relatively high, the electrostatic interaction will completely inhibit the phase separation which actually prevents the same component from being clustered. When temperature is relatively low, the electrostatic interaction will increase the number of phase domains, which actually turns the original macro phase separation into the micro one, thus reducing the cluster size. In this work, we also systematically study the influences of other factors, such as temperature, charge density of charged components, and the averaged concentration of charged component, on the final configuration of charged multicomponent vesicle. In particular, a phase diagram of the temperature and the averaged concentration of the charged component is obtained, and it is found that the number of phase domains will increase with the increase of charge density of component A. These conclusions are also qualitatively applicable to three-dimensional two-component charged vesicles.
      Corresponding author: Li Jian-Feng, lijf@fudan.edu.cn;zhanghd@fudan.edu.cn ; Zhang Hong-Dong, lijf@fudan.edu.cn;zhanghd@fudan.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21474021, 21574028, 21534002).
    [1]

    Ouyang Z C, Helfrich W 1987 Phys. Rev. Lett. 59 2486

    [2]

    Lim H W G, Wortis M, Mukhopadhyay R 2002 Proc. Natl. Acad. Sci. USA 99 16766

    [3]

    Mukhopadhyay R, Gerald L H W, Wortis M 2002 Biophys. J. 82 1756

    [4]

    Yang F Y, Halidan J M H, Jiang Z Y 2014 J. Atom. Mol. Phys. 31 677 (in Chinese) [杨方源, 哈丽旦 居马汗, 蒋中英 2014 原子与分子物理学报 31 677]

    [5]

    Li J F, Zhang H D, Qiu F 2013 J. Phys. Chem. B 117 843

    [6]

    Liang X Y, Li L, Qiu F, Yang Y L 2010 Physica A 389 3965

    [7]

    Li L, Liang X Y, Lin M Y, Qiu F, Yang Y L 2005 J. Am. Chem. Soc. 127 17996

    [8]

    Lipowsky R 1992 J. de Physique Ⅱ 2 1825

    [9]

    Jlicher F, Lipowsky R 1993 Phys. Rev. Lett. 70 2964

    [10]

    Leibler S 1986 J. Phys. 47 507

    [11]

    Seifert U 1993 Phys. Rev. Lett. 70 1335

    [12]

    Jrgensen K, Klinger A, Raiman M, Biltonen R L 1996 J. Phys. Chem. 100 2766

    [13]

    Jrgensen K, Mouritsen O G 1999 Thermochim. Acta 328 81

    [14]

    Sunil-Kumar P B, Gompper G, Lipowsky R 2001 Phys. Rev. Lett. 86 3911

    [15]

    Yamamoto S, Hyodo S 2003 J. Chem. Phys. 118 7937

    [16]

    Laradji M, Sunil Kumar P B 2004 Phys. Rev. Lett. 93 198105

    [17]

    Taniguchi T 1996 Phys. Rev. Lett. 76 4444

    [18]

    Sinha K P, Thaokar R M 2016 Eur. Phys. J. E 39 73

    [19]

    Li J F, Zhang H D, Qiu F, Yang Y L, Chen J Z Y 2015 Soft Matter 11 1788

    [20]

    Ito H, Higuchi Y J 2016 Phys. Rev. E 94 042611

    [21]

    Li J F, Zhang H D, Qiu F, Yang Y L 2005 Acta Phys. Sin. 54 4000 (in Chinese) [李剑锋, 张红东, 邱枫, 杨玉良 2005 物理学报 54 4000]

    [22]

    Li J F, Zhang H D, Qiu F, Shi A C 2013 Phys. Rev. E 88 012719

    [23]

    Guo K K 2005 Ph. D. Dissertation (Shanghai: Fudan University) (in Chinese) [郭坤琨 2005 博士学位论文 (上海: 复旦大学)]

    [24]

    Li J F, Zhang H D, Tang P, Qiu F, Yang Y L 2006 Macromol. Theory Simul. 15 432

    [25]

    Xia B K, Li J F, Li W H, Zhang H D, Qiu F 2013 Acta Phys. Sin. 62 248701 (in Chinese) [夏彬凯, 李剑锋, 李卫华, 张红东, 邱枫 2013 物理学报 62 248701]

    [26]

    Helfrich W 1973 Z. Naturforsch. C 28 693

  • [1]

    Ouyang Z C, Helfrich W 1987 Phys. Rev. Lett. 59 2486

    [2]

    Lim H W G, Wortis M, Mukhopadhyay R 2002 Proc. Natl. Acad. Sci. USA 99 16766

    [3]

    Mukhopadhyay R, Gerald L H W, Wortis M 2002 Biophys. J. 82 1756

    [4]

    Yang F Y, Halidan J M H, Jiang Z Y 2014 J. Atom. Mol. Phys. 31 677 (in Chinese) [杨方源, 哈丽旦 居马汗, 蒋中英 2014 原子与分子物理学报 31 677]

    [5]

    Li J F, Zhang H D, Qiu F 2013 J. Phys. Chem. B 117 843

    [6]

    Liang X Y, Li L, Qiu F, Yang Y L 2010 Physica A 389 3965

    [7]

    Li L, Liang X Y, Lin M Y, Qiu F, Yang Y L 2005 J. Am. Chem. Soc. 127 17996

    [8]

    Lipowsky R 1992 J. de Physique Ⅱ 2 1825

    [9]

    Jlicher F, Lipowsky R 1993 Phys. Rev. Lett. 70 2964

    [10]

    Leibler S 1986 J. Phys. 47 507

    [11]

    Seifert U 1993 Phys. Rev. Lett. 70 1335

    [12]

    Jrgensen K, Klinger A, Raiman M, Biltonen R L 1996 J. Phys. Chem. 100 2766

    [13]

    Jrgensen K, Mouritsen O G 1999 Thermochim. Acta 328 81

    [14]

    Sunil-Kumar P B, Gompper G, Lipowsky R 2001 Phys. Rev. Lett. 86 3911

    [15]

    Yamamoto S, Hyodo S 2003 J. Chem. Phys. 118 7937

    [16]

    Laradji M, Sunil Kumar P B 2004 Phys. Rev. Lett. 93 198105

    [17]

    Taniguchi T 1996 Phys. Rev. Lett. 76 4444

    [18]

    Sinha K P, Thaokar R M 2016 Eur. Phys. J. E 39 73

    [19]

    Li J F, Zhang H D, Qiu F, Yang Y L, Chen J Z Y 2015 Soft Matter 11 1788

    [20]

    Ito H, Higuchi Y J 2016 Phys. Rev. E 94 042611

    [21]

    Li J F, Zhang H D, Qiu F, Yang Y L 2005 Acta Phys. Sin. 54 4000 (in Chinese) [李剑锋, 张红东, 邱枫, 杨玉良 2005 物理学报 54 4000]

    [22]

    Li J F, Zhang H D, Qiu F, Shi A C 2013 Phys. Rev. E 88 012719

    [23]

    Guo K K 2005 Ph. D. Dissertation (Shanghai: Fudan University) (in Chinese) [郭坤琨 2005 博士学位论文 (上海: 复旦大学)]

    [24]

    Li J F, Zhang H D, Tang P, Qiu F, Yang Y L 2006 Macromol. Theory Simul. 15 432

    [25]

    Xia B K, Li J F, Li W H, Zhang H D, Qiu F 2013 Acta Phys. Sin. 62 248701 (in Chinese) [夏彬凯, 李剑锋, 李卫华, 张红东, 邱枫 2013 物理学报 62 248701]

    [26]

    Helfrich W 1973 Z. Naturforsch. C 28 693

计量
  • 文章访问数:  4659
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-28
  • 修回日期:  2017-10-28
  • 刊出日期:  2018-02-05

/

返回文章
返回