搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于收缩高密度碳纳米管阵列的柔性固态超级电容器

朱畦 袁协涛 诸翊豪 张晓华 杨朝晖

引用本文:
Citation:

基于收缩高密度碳纳米管阵列的柔性固态超级电容器

朱畦, 袁协涛, 诸翊豪, 张晓华, 杨朝晖

Flexible solid-state supercapacitors based on shrunk high-density aligned carbon nanotube arrays

Zhu Qi, Yuan Xie-Tao, Zhu Yi-Hao, Zhang Xiao-Hua, Yang Zhao-Hui
PDF
导出引用
  • 柔性超级电容器因其加工方式灵活,具有高的能量密度和可剪裁可弯曲的特性,近年来受到广泛的关注.碳纳米管阵列凭借其自身良好的电化学性能、高效的电荷转移率和良好的循环寿命被视为理想的能量储存材料.然而原始碳纳米管阵列密度较小,且因管间较弱的相互作用力使得其在加工和转移过程中容易倒塌散落,从而限制了碳纳米管阵列直接用于组装柔性电子器件.本文应用无水乙醇对阵列进行收缩处理,在保持阵列高度取向优势的前提下大大增加了阵列的密度和机械强度,同时使用生物相容性好的聚乙烯醇(PVA)导电凝胶包埋碳纳米管阵列来制备柔性固态超级电容器件.PVA包埋的阵列复合体在折叠、弯曲过程中既能保持良好的机械稳定性和柔性,又能保持碳纳米管的高度取向性.使用原位电氧化对碳纳米管阵列外壁进行简单的电化学修饰,可以进一步提高该复合器件的性能.该方法为未来研发可穿戴电子器件以及可植入医学器件提供了新思路.
    Nowadays flexible solid-state supercapacitors (FSCs) have received more and more attention than conventional capacitors due to the good operability and flexible fabrication process as well as high specific/volumetric energy density. In general, carbon based materials including amorphous carbon, carbon nanotube, grapheme, etc. can be used to fabricate electrolytic double-layer capacitance (EDLC)-type FSCs due to its extraordinary cyclic stability at high current density. Aligned carbon nanotube (ACNT) arrays are one of the ideal electrode candidates for energy storage due to their good capacity, highly efficient charge transfer rate, excellent rate performance and long cycle life compared with those of other carbon-based materials carbon nanotubes. However, the low density and the weak interaction between the carbon tubes cause the CNT arrays to tend to easily collapse during processing and transferring. Thus pure carbon nanotube arrays are unable to be directly used to assemble flexible electronic devices. In this paper, we use ethyl alcohol to shrink the CNT array to increase the density and mechanical strength. At the same time we embed the conductive polyvingle alcohol (PVA) gel into the carbon nanotube array to fabricate a flexible solid supercapacitor. Hydrogel-based solid electrolytes have been long considered to be used to prepare FSCs, because this method possesses obvious advantages including low cost, good environmental compatibility and simple manufacturing process. The ACNT/PVA complex can maintain good mechanical stability and flexibility during its folding and bending, and can also keep the high orientation of carbon nanotubes. The maximum capacitance of the hybrid flexible device can reach 458 mFcm-3 at a current density of 10 mAcm-3, which is much higher than the capacitance reported in the literature. After 5000 charging-discharging cycles, a capacity still keeps nearly 100%. The maximum energy density of CNTs/gel composite device can reach 0.04 mWhcm-3 with an average power density of 3.7 mWcm-3. The capacitance can be further increased to 618 mFcm-3 by a simple in-situ electrochemical oxidation treatment. The energy density can be further increased to 0.07 mWhcm-3 by the electro-oxidation treatment. The electrochemical performance of the device is far superior to that of EDLC-typed FSC reported in the literature. Additionally the equivalent series resistance (RESR) of the devices decreases from 120 to 30 and also the charge transfer resistance declines from 90 to 10 . This is mainly due to the effect of pseudo capacitance and electro-wetting effect caused by electro-oxidation. This easy-to-assemble hybrid devices thus potentially pave the way for manufacturing wearable devices and implantable medical devices.
      通信作者: 杨朝晖, yangzhaohui@suda.edu.cn
    • 基金项目: 国家自然科学基金(批准号:21204059)、江苏省特聘教授计划和天津工业大学膜分离及膜过程国家重点实验室开放课题(批准号:M2-201501)资助的课题.
      Corresponding author: Yang Zhao-Hui, yangzhaohui@suda.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21204059), the Specially-Appointed Professor Plan in Jiangsu Province, China, and the State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, China (Grant No. M2-201501).
    [1]

    Holdren J P 2007 Science 315 737

    [2]

    Arunachalam V S, Fleischer E L 2008 MRS Bull. 33 261

    [3]

    Wang K, Zhang X, Li C, Sun X, Meng Q, Ma Y, Wei Z 2015 Adv. Mater. 27 7451

    [4]

    Li Y, Xu J, Feng T, Yao Q, Xie J, Xia H 2017 Adv. Functional Mater. 27 1606728

    [5]

    Frackowiak E, Khomenko V, Jurewicz K, Lota K, Bguin F 2006 J. Power Sources 153 413

    [6]

    Zhai T, Wan L, Sun S, Chen Q, Sun J, Xia Q, Xia H 2017 Adv. Mater. 29 1604167

    [7]

    Lu X, Yu M, Wang G, Tong Y, Li Y 2014 Energy Environ. Sci. 7 2160

    [8]

    He Y, Chen W, Gao C, Zhou J, Li X, Xie E 2013 Nanoscale 5 8799

    [9]

    Yang P, Mai W 2014 Nano Energy 8 274

    [10]

    Liu L, Niu Z, Chen J 2016 Chem. Soc. Rev. 45 4340

    [11]

    Simon P, Gogotsi Y 2013 Accounts of Chemical Research 46 1094

    [12]

    Fic K, Lota G, Meller M, Frackowiak E 2012 Energy Environ. Sci. 5 5842

    [13]

    Lin Z, Zeng Z, Gui X, Tang Z, Zou M, Cao A 2016 Adv. Energy Mater. 6 1600554

    [14]

    Jiang H, Lee P S, Li C 2013 Energy Environ. Sci. 6 41

    [15]

    Zhang H, Cao G, Yang Y 2009 Energy Environ. Sci. 2 932

    [16]

    Talapatra S, Kar S, Pal S K, Vajtai R, Ci L, Victor P, Shaijumon M M, Kaur S, Nalamasu O, Ajayan P M 2006 Nature Nanotechnol. 1 112

    [17]

    Pushparaj V L, Shaijumon M M, Kumar A, Murugesan S, Ci L, Vajtai R, Linhardt R J, Nalamasu O, Ajayan P M 2007 Proc. Nat. Acad. Sci. USA 104 13574

    [18]

    Futaba D N, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Iijima S 2006 Nat. Mater. 5 987

    [19]

    Hata K, Futaba D N, Mizuno K, Namai T, Yumura M, Iijima S 2004 Science 306 1362

    [20]

    Liu Z, Liao G, Li S, Pan Y, Wang X, Weng Y, Zhang X, Yang Z 2013 J. Mater. Chem. A 1 13321

    [21]

    Hsia B, Marschewski J, Wang S, In J B, Carraro C, Poulikakos D, Grigoropoulos C P, Maboudian R 2014 Nanotechnology 25 055401

    [22]

    Kang Y J, Chung H, Han C H, Kim W 2012 Nanotechnology 23 065401

    [23]

    Kaempgen M, Chan C K, Ma J, Cui Y and Gruner G 2009 Nano Lett. 9 1872

    [24]

    El-Kady M F, Strong V, Dubin S, Kaner R B 2012 Science 335 1326

  • [1]

    Holdren J P 2007 Science 315 737

    [2]

    Arunachalam V S, Fleischer E L 2008 MRS Bull. 33 261

    [3]

    Wang K, Zhang X, Li C, Sun X, Meng Q, Ma Y, Wei Z 2015 Adv. Mater. 27 7451

    [4]

    Li Y, Xu J, Feng T, Yao Q, Xie J, Xia H 2017 Adv. Functional Mater. 27 1606728

    [5]

    Frackowiak E, Khomenko V, Jurewicz K, Lota K, Bguin F 2006 J. Power Sources 153 413

    [6]

    Zhai T, Wan L, Sun S, Chen Q, Sun J, Xia Q, Xia H 2017 Adv. Mater. 29 1604167

    [7]

    Lu X, Yu M, Wang G, Tong Y, Li Y 2014 Energy Environ. Sci. 7 2160

    [8]

    He Y, Chen W, Gao C, Zhou J, Li X, Xie E 2013 Nanoscale 5 8799

    [9]

    Yang P, Mai W 2014 Nano Energy 8 274

    [10]

    Liu L, Niu Z, Chen J 2016 Chem. Soc. Rev. 45 4340

    [11]

    Simon P, Gogotsi Y 2013 Accounts of Chemical Research 46 1094

    [12]

    Fic K, Lota G, Meller M, Frackowiak E 2012 Energy Environ. Sci. 5 5842

    [13]

    Lin Z, Zeng Z, Gui X, Tang Z, Zou M, Cao A 2016 Adv. Energy Mater. 6 1600554

    [14]

    Jiang H, Lee P S, Li C 2013 Energy Environ. Sci. 6 41

    [15]

    Zhang H, Cao G, Yang Y 2009 Energy Environ. Sci. 2 932

    [16]

    Talapatra S, Kar S, Pal S K, Vajtai R, Ci L, Victor P, Shaijumon M M, Kaur S, Nalamasu O, Ajayan P M 2006 Nature Nanotechnol. 1 112

    [17]

    Pushparaj V L, Shaijumon M M, Kumar A, Murugesan S, Ci L, Vajtai R, Linhardt R J, Nalamasu O, Ajayan P M 2007 Proc. Nat. Acad. Sci. USA 104 13574

    [18]

    Futaba D N, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Iijima S 2006 Nat. Mater. 5 987

    [19]

    Hata K, Futaba D N, Mizuno K, Namai T, Yumura M, Iijima S 2004 Science 306 1362

    [20]

    Liu Z, Liao G, Li S, Pan Y, Wang X, Weng Y, Zhang X, Yang Z 2013 J. Mater. Chem. A 1 13321

    [21]

    Hsia B, Marschewski J, Wang S, In J B, Carraro C, Poulikakos D, Grigoropoulos C P, Maboudian R 2014 Nanotechnology 25 055401

    [22]

    Kang Y J, Chung H, Han C H, Kim W 2012 Nanotechnology 23 065401

    [23]

    Kaempgen M, Chan C K, Ma J, Cui Y and Gruner G 2009 Nano Lett. 9 1872

    [24]

    El-Kady M F, Strong V, Dubin S, Kaner R B 2012 Science 335 1326

  • [1] 陈惠燕, 李洛非, 王炜, 曹毅, 雷海. 力信号对心肌细胞跳动的调控. 物理学报, 2024, 73(8): 088701. doi: 10.7498/aps.73.20240095
    [2] 张问博, 刘少承, 廖亮, 魏文崟, 李乐天, 王亮, 颜宁, 钱金平, 臧庆. 基于超级电容器的充放电电路系统研制及其在EAST限制器探针测量中的应用. 物理学报, 2024, 73(6): 065203. doi: 10.7498/aps.73.20231697
    [3] 孙志伟, 何燕, 唐元政. 单壁碳纳米管受限空间内水的分布. 物理学报, 2021, 70(6): 060201. doi: 10.7498/aps.70.20201523
    [4] 陈康, 沈煜年. 软体机器人用多孔聚合物水凝胶的摩擦接触非线性行为. 物理学报, 2021, 70(12): 120201. doi: 10.7498/aps.70.20202134
    [5] 张鑫, 陈星, 白天, 游兴艳, 赵鑫, 刘向阳, 叶美丹. 柔性纤维状超级电容器的研究进展. 物理学报, 2020, 69(17): 178201. doi: 10.7498/aps.69.20200159
    [6] 邵光伟, 郭珊珊, 于瑞, 陈南梁, 叶美丹, 刘向阳. 可拉伸超级电容器的研究进展:电极、电解质和器件. 物理学报, 2020, 69(17): 178801. doi: 10.7498/aps.69.20200881
    [7] 叶安娜, 张晓华, 杨朝晖. 基于对苯二酚/碳纳米管阵列氧化还原增强固态超级电容器的研究. 物理学报, 2020, 69(12): 126101. doi: 10.7498/aps.69.20200204
    [8] 巫梦丹, 周胜林, 叶安娜, 王敏, 张晓华, 杨朝晖. 基于中性水凝胶/取向碳纳米管阵列高电压柔性固态超级电容器. 物理学报, 2019, 68(10): 108201. doi: 10.7498/aps.68.20182288
    [9] 杨秀涛, 梁忠冠, 袁雨佳, 阳军亮, 夏辉. 多孔碳纳米球的制备及其电化学性能. 物理学报, 2017, 66(4): 048101. doi: 10.7498/aps.66.048101
    [10] 张诚, 邓明森, 蔡绍洪. 基于镍泡沫支撑的Co3O4纳米多孔结构的高性能超级电容器电极. 物理学报, 2017, 66(12): 128201. doi: 10.7498/aps.66.128201
    [11] 郭立强, 温娟, 程广贵, 袁宁一, 丁建宁. 基于KH550-GO固态电解质中电容耦合作用的双侧栅IZO薄膜晶体管. 物理学报, 2016, 65(17): 178501. doi: 10.7498/aps.65.178501
    [12] 李阳, 宋永顺, 黎明, 周昕. 碳纳米管中水孤立子扩散现象的模拟研究. 物理学报, 2016, 65(14): 140202. doi: 10.7498/aps.65.140202
    [13] 韩典荣, 朱兴凤, 戴亚飞, 程承平, 罗成林. 碳纳米管阵列水渗透性质的研究. 物理学报, 2015, 64(23): 230201. doi: 10.7498/aps.64.230201
    [14] 闫红丹, Peter Lemmens, Johannes Ahrens, Martin Bröring, Sven Burger, Winfried Daum, Gerhard Lilienkamp, Sandra Korte, Aidin Lak, Meinhard Schilling. 基于表面等离子体耦合的高密度金纳米线阵列. 物理学报, 2012, 61(23): 237105. doi: 10.7498/aps.61.237105
    [15] 全军, 刘一星, 余亚斌. 相干平行板电容器对外场的动态响应. 物理学报, 2010, 59(2): 1237-1242. doi: 10.7498/aps.59.1237
    [16] 陈国栋, 王六定, 张教强, 曹得财, 安 博, 丁富才, 梁锦奎. 掺硼水吸附碳纳米管电子场发射性能的第一性原理研究. 物理学报, 2008, 57(11): 7164-7167. doi: 10.7498/aps.57.7164
    [17] 陈学锋, 李华梅, 李东杰, 曹 菲, 董显林. 脉冲电容器用细电滞回线铁电陶瓷材料的研究. 物理学报, 2008, 57(11): 7298-7304. doi: 10.7498/aps.57.7298
    [18] 张春梅, 边心超, 陈 强, 付亚波, 张跃飞. 微量水对碳纳米管形貌的影响及其机理研究. 物理学报, 2008, 57(7): 4602-4606. doi: 10.7498/aps.57.4602
    [19] 欧阳雨, 方 炎. 水对800℃下CH4在Ar气中分解制备单壁碳纳米管的影响. 物理学报, 2005, 54(2): 578-581. doi: 10.7498/aps.54.578
    [20] 张钟华. 变动边界微扰法及其对精密电容器误差计算的应用. 物理学报, 1979, 28(4): 563-570. doi: 10.7498/aps.28.563
计量
  • 文章访问数:  5096
  • PDF下载量:  318
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-17
  • 修回日期:  2017-10-20
  • 刊出日期:  2019-01-20

/

返回文章
返回