搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

静-动加载相结合的材料状态方程实验平台的研制

舒桦 涂昱淳 王寯越 贾果 叶君建 邓文 束海云 杨艳平 杜雪艳 谢志勇 贺芝宇 方智恒 华能 黄秀光 裴文兵 傅思祖

引用本文:
Citation:

静-动加载相结合的材料状态方程实验平台的研制

舒桦, 涂昱淳, 王寯越, 贾果, 叶君建, 邓文, 束海云, 杨艳平, 杜雪艳, 谢志勇, 贺芝宇, 方智恒, 华能, 黄秀光, 裴文兵, 傅思祖

Material equation of state by coupling static and dynamic loading

Shu Hua, Tu Yu-Chun, Wang Jun-Yue, Jia Guo, Ye Jun-Jian, Deng Wen, Shu Hai-Yun, Yang Yan-Ping, Du Xue-Yan, Xie Zhi-Yong, He Zhi-Yu, Fang Zhi-Heng, Hua Neng, Huang Xiu-Guang, Pei Wen-Bing, Fu Si-Zu
PDF
导出引用
  • 根据神光-Ⅱ第九路高功率激光加载的特点,对传统静高压金刚石压砧装置进行了改进和优化设计,研制出了适合高功率激光加载条件下材料宽域状态方程研究的新型静高压靶.在神光-Ⅱ高功率激光装置上建立了基于静高压金刚石压砧和动高压激光相结合的材料宽域状态方程研究平台.利用这一平台开展了超纯水的宽域状态方程实验探索,获得了较好的实验结果.
    Materials can be experimentally characterized up to terapascal pressures by sending a laser-induced shock wave through a sample that is pre-compressed inside a diamond-anvil cell. Pre-compression expands the ability to control the initial condition, allowing access to thermodynamic states from the principal Hugoniot and enter into the 10 TPa to 100 TPa (0.1-1 Gbar) pressure range that is relevant to planetary science. We demonstrate here a laser-driven shock wave in a water sample that is pre-compressed in a diamond anvil cell. The compression factors of the dynamic and static techniques are multiplied. This approach allows access to a family of Hugoniot curves which span the P-T phase diagram of fluid water to high density. According to the loading characteristics of the SG-Ⅱ high-power laser, the traditional diamond anvil cell is improved and optimized, and a new diamond anvil cell target adapting to high power laser loading is developed. In order to adapt to laser shock, the diamond window should be thin (100 μm) enough so that the shock can propagate to the sample before the side rarefaction erodes too much the shock planarity. With a thickness of 100 mm over an aperture of 600 μm diameter, a pre-compressed water sample at 0.5 GPa can be obtained. The water is pre-compressed to 0.5 GPa by using the diamond anvil cell. Hugoniot curve is partially followed starting from pre-compression at a pressure of 0.5 GPa. Pressure, density, and temperature data for pre-compressed water are obtained in a pressure range from 150 GPa to 350 GPa by using the laser-driven shock compression technique. Our P-ρ-T data totally agree with the results from the model based on quantum molecular dynamics calculations. These facts indicate that this water model can be used as the standard for modeling interior structures of Neptune, Uranus, and exoplanets in the liquid phase in the multi-Mbar range and should improve our understanding of these types of planets.
      通信作者: 舒桦, shuhua1979@163.com
    • 基金项目: 科学挑战专题(批准号:TZ2016001)和国家重点研发计划(批准号:2017YFA0403200)资助的课题.
      Corresponding author: Shu Hua, shuhua1979@163.com
    • Funds: Project supported by the Science Challenge Project, China (Grant No. TZ2016001) and the National Key R&D Program of China (Grant No. 2017YFA0403200).
    [1]

    Benuzzi A, Löwer T, Koenig M, Faral B, Batani D, Beretta D, Danson C, Pepler D 1996 Phys. Rev. E 54 2162

    [2]

    Batani D, Morelli A, Tomasini M, et al. 2002 Phys. Rev. Lett. 88 235502

    [3]

    Batani D, Strati F, Stabile H, et al. 2004 Phys. Rev. Lett. 92 065503

    [4]

    Boehly T R, Vianello E, Miller J E, Craxton R S, Collins T J B, Goncharov V N, Igumenshchev I V, Meyerhofer D D, Hicks D G, Celliers P M, Collins G W 2006 Phys. Plasmas 13 056303

    [5]

    Barrios M A, Hicks D G, Boehly T R, Fratanduono D E, Eggert J H, Celliers P M, Collins G W, Meyerhofer D D 2010 Phys. Plasmas 17 056307

    [6]

    Sano T, Ozaki N, Sakaiya T, Shigemori K, Ikoma M, Kimura T, Miyanishi K, Endo T, Shiroshita A, Takahashi H, Jitsui T, Hori Y, Hironaka Y, Iwamoto A, Kadono T, Nakai M, Okuchi T, Ohtani K, Shimizu K, Kondo T, Kodama R, Mima K 2011 Phys. Rev. B 83 054117

    [7]

    Jeanloz R, Celliers P M, Collins G W, Eggert J H, Lee K K M, McWilliams R S, Brygoo S, Loubeyre P 2007 Proc. Natl. Acad. Sci. USA 104 9172

    [8]

    Loubeyre P, Celliers P M, Hicks D G, Henry E, Dawaele A, Pasley J, Eggert J, Koenig M, Occelli F, Lee K K M, et al. 2004 High-Pressure Res. 24 25

    [9]

    Lee K K M, Benedetti L R, Jeanloz R, Celliers P M, Eggert J H, Hicks D G, Moon S J, Mackinnon A, Da Silva L B, Bradley D K, et al. 2006 J. Chem. Phys. 125 014701

    [10]

    Eggert J, Brygoo S, Loubeyre P, McWilliams R S, Celliers P M, Hicks D G, Boehly T R, Jeanloz R, Collins G W 2008 Phys. Rev. Lett. 100 124503

    [11]

    Celliers P M, Loubeyre P, Eggert J H, Brygoo S, McWilliams R S, Hicks D G, Boehly T R, Jeanloz R, Collins G W 2010 Phys. Rev. Lett. 104 184503

    [12]

    Loubeyre P, Brygoo S, Eggert J, Celliers P M, Spaulding D K, Rygg J R, Boehly T R, Collins G W, Jeanloz R 2012 Phys. Rev. B 86 144115

    [13]

    Kimura T, Ozaki N, Sano T, Okuchi T, Sano T, Shimizu K, Miyanishi K, Terai T, Kakeshita T, Sakawa Y, Kodama R 2015 J. Chem. Phys. 142 164504

    [14]

    Seagle C T, Reinhart W D, Lopez A J, Hickman R J, Thornhill T F 2016 J. Appl. Phys. 120 125902

    [15]

    Knudson M D, Desjarlais M P 2009 Phys. Rev. Lett. 103 225501

    [16]

    Hicks D G, Boehly T R, Celliers P M, Eggert J H, Vianello E, Meyerhofer D D, Collins G W 2005 Phys. Plasmas 12 082702

    [17]

    Mao H K, Bell P M, Shaner J W, Steinberg D J 1978 J. Appl. Phys. 49 3276

    [18]

    Deng X M, Liang X C, Chen Z 1986 Appl. Opt. 25 377

    [19]

    Fu S Z, Gu, Y, Wu J, Wang S J 1995 Phys. Plasmas 2 3461

    [20]

    Shu H, Huang X G, Ye J J, Jia G, Wu J, Fu S Z 2017 Laser Part. Beams 35 145

    [21]

    Shu H, Fu S Z, Huang X G, Ye J J, Zhou H Z, Xie Z Y, Long T 2012 Acta Phys. Sin. 61 114102 (in Chinese) [舒桦, 傅思祖, 黄秀光, 叶君建, 周华珍, 谢志勇, 龙滔 2012 物理学报 61 114102]

    [22]

    Celliers P M, Bradley D K, Collins G W, Hicks D G, Boehly T R, Armstrong W J 2004 Rev. Sci. Instrum. 75 4916

    [23]

    Shu H, Fu S Z, Huang X G, Wu J, Zhou H Z, Ye J J 2012 Meas. Sci. Technol. 23 015203

    [24]

    Miller J E, Boehly T R, Melchior A, Meyerhofer D D, Celliers P M, Eggert J H, Hicks D G, Sorce C M, Oertel J A, Emmel P M 2007 Rev. Sci. Instrum. 78 034903

    [25]

    French M, Mattsson T R, Nettelmann N, Redmer R 2009 Phys. Rev. B 79 054107

  • [1]

    Benuzzi A, Löwer T, Koenig M, Faral B, Batani D, Beretta D, Danson C, Pepler D 1996 Phys. Rev. E 54 2162

    [2]

    Batani D, Morelli A, Tomasini M, et al. 2002 Phys. Rev. Lett. 88 235502

    [3]

    Batani D, Strati F, Stabile H, et al. 2004 Phys. Rev. Lett. 92 065503

    [4]

    Boehly T R, Vianello E, Miller J E, Craxton R S, Collins T J B, Goncharov V N, Igumenshchev I V, Meyerhofer D D, Hicks D G, Celliers P M, Collins G W 2006 Phys. Plasmas 13 056303

    [5]

    Barrios M A, Hicks D G, Boehly T R, Fratanduono D E, Eggert J H, Celliers P M, Collins G W, Meyerhofer D D 2010 Phys. Plasmas 17 056307

    [6]

    Sano T, Ozaki N, Sakaiya T, Shigemori K, Ikoma M, Kimura T, Miyanishi K, Endo T, Shiroshita A, Takahashi H, Jitsui T, Hori Y, Hironaka Y, Iwamoto A, Kadono T, Nakai M, Okuchi T, Ohtani K, Shimizu K, Kondo T, Kodama R, Mima K 2011 Phys. Rev. B 83 054117

    [7]

    Jeanloz R, Celliers P M, Collins G W, Eggert J H, Lee K K M, McWilliams R S, Brygoo S, Loubeyre P 2007 Proc. Natl. Acad. Sci. USA 104 9172

    [8]

    Loubeyre P, Celliers P M, Hicks D G, Henry E, Dawaele A, Pasley J, Eggert J, Koenig M, Occelli F, Lee K K M, et al. 2004 High-Pressure Res. 24 25

    [9]

    Lee K K M, Benedetti L R, Jeanloz R, Celliers P M, Eggert J H, Hicks D G, Moon S J, Mackinnon A, Da Silva L B, Bradley D K, et al. 2006 J. Chem. Phys. 125 014701

    [10]

    Eggert J, Brygoo S, Loubeyre P, McWilliams R S, Celliers P M, Hicks D G, Boehly T R, Jeanloz R, Collins G W 2008 Phys. Rev. Lett. 100 124503

    [11]

    Celliers P M, Loubeyre P, Eggert J H, Brygoo S, McWilliams R S, Hicks D G, Boehly T R, Jeanloz R, Collins G W 2010 Phys. Rev. Lett. 104 184503

    [12]

    Loubeyre P, Brygoo S, Eggert J, Celliers P M, Spaulding D K, Rygg J R, Boehly T R, Collins G W, Jeanloz R 2012 Phys. Rev. B 86 144115

    [13]

    Kimura T, Ozaki N, Sano T, Okuchi T, Sano T, Shimizu K, Miyanishi K, Terai T, Kakeshita T, Sakawa Y, Kodama R 2015 J. Chem. Phys. 142 164504

    [14]

    Seagle C T, Reinhart W D, Lopez A J, Hickman R J, Thornhill T F 2016 J. Appl. Phys. 120 125902

    [15]

    Knudson M D, Desjarlais M P 2009 Phys. Rev. Lett. 103 225501

    [16]

    Hicks D G, Boehly T R, Celliers P M, Eggert J H, Vianello E, Meyerhofer D D, Collins G W 2005 Phys. Plasmas 12 082702

    [17]

    Mao H K, Bell P M, Shaner J W, Steinberg D J 1978 J. Appl. Phys. 49 3276

    [18]

    Deng X M, Liang X C, Chen Z 1986 Appl. Opt. 25 377

    [19]

    Fu S Z, Gu, Y, Wu J, Wang S J 1995 Phys. Plasmas 2 3461

    [20]

    Shu H, Huang X G, Ye J J, Jia G, Wu J, Fu S Z 2017 Laser Part. Beams 35 145

    [21]

    Shu H, Fu S Z, Huang X G, Ye J J, Zhou H Z, Xie Z Y, Long T 2012 Acta Phys. Sin. 61 114102 (in Chinese) [舒桦, 傅思祖, 黄秀光, 叶君建, 周华珍, 谢志勇, 龙滔 2012 物理学报 61 114102]

    [22]

    Celliers P M, Bradley D K, Collins G W, Hicks D G, Boehly T R, Armstrong W J 2004 Rev. Sci. Instrum. 75 4916

    [23]

    Shu H, Fu S Z, Huang X G, Wu J, Zhou H Z, Ye J J 2012 Meas. Sci. Technol. 23 015203

    [24]

    Miller J E, Boehly T R, Melchior A, Meyerhofer D D, Celliers P M, Eggert J H, Hicks D G, Sorce C M, Oertel J A, Emmel P M 2007 Rev. Sci. Instrum. 78 034903

    [25]

    French M, Mattsson T R, Nettelmann N, Redmer R 2009 Phys. Rev. B 79 054107

  • [1] 田宝贤, 王钊, 胡凤明, 高智星, 班晓娜, 李静. “天光一号”驱动的聚苯乙烯高压状态方程测量. 物理学报, 2021, 70(19): 196401. doi: 10.7498/aps.70.20210240
    [2] 汤文辉, 徐彬彬, 冉宪文, 徐志宏. 高温等离子体的状态方程及其热力学性质. 物理学报, 2017, 66(3): 030505. doi: 10.7498/aps.66.030505
    [3] 张其黎, 张弓木, 赵艳红, 刘海风. 氘、氦及其混合物状态方程第一原理研究. 物理学报, 2015, 64(9): 094702. doi: 10.7498/aps.64.094702
    [4] 贾果, 黄秀光, 谢志勇, 叶君建, 方智恒, 舒桦, 孟祥富, 周华珍, 傅思祖. 液氘状态方程实验数据测量. 物理学报, 2015, 64(16): 166401. doi: 10.7498/aps.64.166401
    [5] 周洪强, 于明, 孙海权, 何安民, 陈大伟, 张凤国, 王裴, 邵建立. 混合物状态方程的计算. 物理学报, 2015, 64(6): 064702. doi: 10.7498/aps.64.064702
    [6] 韩勇, 龙新平, 郭向利. 一种简化维里型状态方程预测高温甲烷PVT关系. 物理学报, 2014, 63(15): 150505. doi: 10.7498/aps.63.150505
    [7] 李风姣, 贺端威, 柳雷, 张毅, 敬秋民, 刘盛刚, 陈海花, 毕延, 徐济安. -Ce中的高压纵波声子模软化和状态方程描述. 物理学报, 2012, 61(11): 116401. doi: 10.7498/aps.61.116401
    [8] 蒋国平, 焦楚杰, 肖波齐. 高强混凝土气体炮试验与高压状态方程研究. 物理学报, 2012, 61(2): 026701. doi: 10.7498/aps.61.026701
    [9] 舒桦, 傅思祖, 黄秀光, 叶君建, 周华珍, 谢志勇, 龙滔. 神光II装置上速度干涉仪的研制及应用. 物理学报, 2012, 61(11): 114102. doi: 10.7498/aps.61.114102
    [10] 朱希睿, 孟续军. 改进的含温有界原子模型对金的电子物态方程的计算. 物理学报, 2011, 60(9): 093103. doi: 10.7498/aps.60.093103
    [11] 袁都奇. Fermi气体在势阱中的最大囚禁范围与状态方程. 物理学报, 2011, 60(6): 060509. doi: 10.7498/aps.60.060509
    [12] 宋萍, 蔡灵仓. Grüneisen系数与铝的高温高压状态方程. 物理学报, 2009, 58(3): 1879-1884. doi: 10.7498/aps.58.1879
    [13] 王江华, 贺端威. 金刚石压砧内单轴应力场对物质状态方程测量的影响. 物理学报, 2008, 57(6): 3397-3401. doi: 10.7498/aps.57.3397
    [14] 姜礼华, 刘福生, 田春玲. LiH晶体中离子间多体相互作用与高压下状态方程研究. 物理学报, 2008, 57(7): 4412-4416. doi: 10.7498/aps.57.4412
    [15] 张 超, 孙久勋, 田荣刚, 邹世勇. 氮化硅α,β和γ相的解析状态方程和热物理性质. 物理学报, 2007, 56(10): 5969-5973. doi: 10.7498/aps.56.5969
    [16] 过增元, 曹炳阳, 朱宏晔, 张清光. 声子气的状态方程和声子气运动的守恒方程. 物理学报, 2007, 56(6): 3306-3312. doi: 10.7498/aps.56.3306
    [17] 田春玲, 刘福生, 蔡灵仓, 经福谦. 多体相互作用对高压固氦状态方程的影响. 物理学报, 2006, 55(2): 764-769. doi: 10.7498/aps.55.764
    [18] 姜旻昊, 孟续军. 用Hartree-Fock-Slater-Boltzmann-Saha模型研究等离子体细致组态原子结构及其状态方程. 物理学报, 2005, 54(2): 587-593. doi: 10.7498/aps.54.587
    [19] 巫 翔, 秦 善, 吴自玉, 董宇辉, 刘 景, 李晓东. 钙钛矿CaTiO3的超高压结构研究. 物理学报, 2004, 53(6): 1967-1971. doi: 10.7498/aps.53.1967
    [20] 黄秀光, 罗平庆, 傅思祖, 顾援, 马民勋, 吴江, 何钜华. 一种激光驱动高压状态方程绝对测量方法的探索. 物理学报, 2002, 51(2): 337-341. doi: 10.7498/aps.51.337
计量
  • 文章访问数:  5171
  • PDF下载量:  166
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-22
  • 修回日期:  2017-12-17
  • 刊出日期:  2019-03-20

/

返回文章
返回