搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于中国散裂中子源多功能反射谱仪的高气压多丝正比室探测器的研制

温志文 祁辉荣 张余炼 王海云 刘凌 王艳凤 张建 李玉红 孙志嘉

引用本文:
Citation:

用于中国散裂中子源多功能反射谱仪的高气压多丝正比室探测器的研制

温志文, 祁辉荣, 张余炼, 王海云, 刘凌, 王艳凤, 张建, 李玉红, 孙志嘉

Development of high-pressure multi-wire proportional chamber neutron detector for the China Spallation Neutron Source multipurpose reflectometer

Wen Zhi-Wen, Qi Hui-Rong, Zhang Yu-Lian, Wang Hai-Yun, Liu Ling, Wang Yan-Feng, Zhang Jian, Li Yu-Hong, Sun Zhi-Jia
PDF
导出引用
  • 中国散裂中子源需要建设一台多功能反射谱仪中子探测器,满足在10年运行期间内,50%(@2Å)以上的探测效率、好于2 mm的二维位置分辨、200 mm×200 mm的灵敏面积、3倍的n/γ分辨能力及良好的二维成像性能.基于此要求,探测器因此采用基于高气压3He气体的多丝正比室,并以满足反射谱仪的探测效率、位置分辨、长期稳定工作和n/γ分辨能力为目标进行探测器的设计.本文经过模拟和实验计算得出:以9 mm厚的铝合金入射窗、铝丝密封的高气压腔体和6 bar 3He+2.5 bar C3H8的工作气体的设计,可满足探测器对2Å中子10年运行期间内54%以上的探测效率要求;探测器对中子的位置分辨可达到1.4 mm左右;设计的气体净化系统,拥有2 L/min的气流速度可有效去除探测器内的负电性杂质气体,气体循环净化后可提高探测器约27%的气体增益,保证探测器长期稳定的运行;通过对252Cf中子源的能谱测量和成像测量,得出探测器的n/γ分辨能力在5倍以上和均匀的成像结果.研制的探测器满足反射谱仪需求,并已在中国散裂中子源反射谱仪靶站就位联调.
    As a multipurpose reflectometer device, the two-dimensional (2D) position resolution neutron detector with a 200 mm×200 mm effective area is developed for China Spallation Neutron Source (CSNS) in Dongguang, China. Due to the requirements for the specific parameters of the multipurpose reflectometer, it should be designed to have a more than 50% (@2 Å) detection efficiency, better than 2 mm position resolution and 3 times n/γ resolution ability during the whole operation period of 10 years. The high pressure multi-wire proportional chamber (MWPC) neutron detector filling 3He gas is used as a key detector. Some simulation results and the experimental results show that the optimized thickness of the neutron entrance window should be 9 mm with using the 7075 aluminum alloy, the high pressure chamber should be sealed by the aluminous ring and a gas mixture should be filled with 6 bar 3He+2.5 bar C3H8. The assembled detector can achieve a more than 54% (@2 Å) detection efficiency in the normal operation.With the 100 μm wide collimator slit, the position resolution for X-rays is about 0.235 mm. Therefore, the position resolution for neutron is about 1.4 mm when 2.5 bar propane is used as the stopping gas for proton and triton. In the chamber, the water vapor, the oxygen and the organic impurity gases will reduce the gas gain, cause the detector electrodes to break down and the detector to speed up aging. To solve the outgassing effect of the detector components and keep the stable operation, the recycled device is designed to have the purification function for the working gases. It could purify the working gas at a flow rate of 2 L/min to remove the oxygen, the water vapor and the organic impurity gases. The detector gain increases about 27% with the purification function. Finally, the n/γ resolution and 2D imaging ability of the detector are tested with the 252Cf neutron source in Institute of High Energy Physics, Chinese Academy of Sciences, the peak ratio of neutron to gamma is obtained to be above 5 from the energy spectra and the detecor has good 2D imaging ability. The performance of the high-pressure MWPC neutron detector could meet the requirements for the multipurpose reflectometer, and the detector will be mounted in the CSNS in this year.
      通信作者: 祁辉荣, qihr@ihep.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11675197,11775242)资助的课题.
      Corresponding author: Qi Hui-Rong, qihr@ihep.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11675197, 11775242).
    [1]

    Zhang L Y, Jing H T, Tang J Y, Li Q, Ruan X C, Ren J, Ning C J, Yu Y J, Tan Z X, Wang P C, He Y C, Wang X Q 2018 Appl Radiat Isotopes 132 212

    [2]

    Chen J, Kang L, Lu H L, Luo P, Wang F W, He L H 2017 Physica B (accepted)

    [3]

    Shen F, Liang T R, Yin W, Yu Q Z, Zuo T S, Yao Z E, Zhu T, Liang T J 2014 Acta Phys. Sin. 63 152801 (in Chinese) [沈飞, 梁泰然, 殷雯, 于全芝, 左太森, 姚泽恩, 朱涛, 梁天骄 2014 物理学报 63 152801]

    [4]

    Yu Q Z, Yin W, Liang T J 2011 Acta Phys. Sin. 60 052501 (in Chinese) [于全芝, 殷雯, 梁天骄 2011 物理学报 60 052501]

    [5]

    Huang C Q, Chen B, Li X X, Syromyatnikov V G, Pleshanov N K 2008 Acta Phys. Sin. 57 364 (in Chinese) [黄朝强, 陈波, 李新喜, Syromyatnikov V G, Pleshanov N K 2008 物理学报 57 364]

    [6]

    Li T F, Chen D F, Wang H L, Sun K, Liu Y T 2009 Acta Phys. Sin. 58 7993 (in Chinese) [李天富, 陈东风, 王洪立, 孙凯, 刘蕴韬 2009 物理学报 58 7993]

    [7]

    Kampmann R, Marmotti M, Haese-Seiller M, Kudryashov V 2004 Physica B 350 e845

    [8]

    Mattauch S, Ioffe A, Lott D, Menelle A, Ott F, Medic Z 2016 J. Phys.: Conf. Ser. 711 012009

    [9]

    Avdeev M V, Bodnarchuk V I, Lauter-Pasyuk V V, Lauter H, Aksenov V L, Yaradaikin S P, Ulyanov V A, Trounov V A, Kalinin S I 2010 J. Phys.: Conf. Ser. 251 012060

    [10]

    Orban J, Cser L, Rosta L, Torok G, Nagy A 2011 NIMA 632 124

    [11]

    Eijk C W 2002 NIMA 477 383

    [12]

    BoieJ R A, Fischer, Inagaki Y, Merritt F C, Okuno H, Radeka V 1982 NIM 200 533

    [13]

    Radeka V, Schaknowski N A, Smith G C, Yu B 1998 NIMA 419 642

    [14]

    Fried J, Harder J A, Mahler G J, Makowiecki D S, Mead J A, Radeka V, Schaknowski N A, Smith G C, Yu B 2002 NIMA 478 415

    [15]

    Doumas A, Smith G C 2012 NIMA 675 8

    [16]

    Desai S S, Desai A M 2006 NIMA 557 607

    [17]

    Wen Z W, Qi H R, Wang Y F, Sun Z J, Zhang Y L, Wang H Y, Zhang J, Ouyang Q, Chen Y B, Li Y H 2017 Acta Phys. Sin. 66 072901 (in Chinese) [温志文, 祁辉荣, 王艳凤, 孙志嘉, 张余炼, 王海云, 张建, 欧阳群, 陈元柏, 李玉红 2017 物理学报 66 072901]

    [18]

    Abuhoza A, Schmidt H R, Biswas S, Frankenfeld U, Hehner J, Schmidt C J 2013 NIMA 718 400

    [19]

    Bouclier R, Capeans M, Garabatos C, Sauli F, Silander F 1994 NIMA 350 464

    [20]

    Niebuhr C 2006 NIMA 566 118

    [21]

    Kadyk J A 1991 NIMA 300 436

  • [1]

    Zhang L Y, Jing H T, Tang J Y, Li Q, Ruan X C, Ren J, Ning C J, Yu Y J, Tan Z X, Wang P C, He Y C, Wang X Q 2018 Appl Radiat Isotopes 132 212

    [2]

    Chen J, Kang L, Lu H L, Luo P, Wang F W, He L H 2017 Physica B (accepted)

    [3]

    Shen F, Liang T R, Yin W, Yu Q Z, Zuo T S, Yao Z E, Zhu T, Liang T J 2014 Acta Phys. Sin. 63 152801 (in Chinese) [沈飞, 梁泰然, 殷雯, 于全芝, 左太森, 姚泽恩, 朱涛, 梁天骄 2014 物理学报 63 152801]

    [4]

    Yu Q Z, Yin W, Liang T J 2011 Acta Phys. Sin. 60 052501 (in Chinese) [于全芝, 殷雯, 梁天骄 2011 物理学报 60 052501]

    [5]

    Huang C Q, Chen B, Li X X, Syromyatnikov V G, Pleshanov N K 2008 Acta Phys. Sin. 57 364 (in Chinese) [黄朝强, 陈波, 李新喜, Syromyatnikov V G, Pleshanov N K 2008 物理学报 57 364]

    [6]

    Li T F, Chen D F, Wang H L, Sun K, Liu Y T 2009 Acta Phys. Sin. 58 7993 (in Chinese) [李天富, 陈东风, 王洪立, 孙凯, 刘蕴韬 2009 物理学报 58 7993]

    [7]

    Kampmann R, Marmotti M, Haese-Seiller M, Kudryashov V 2004 Physica B 350 e845

    [8]

    Mattauch S, Ioffe A, Lott D, Menelle A, Ott F, Medic Z 2016 J. Phys.: Conf. Ser. 711 012009

    [9]

    Avdeev M V, Bodnarchuk V I, Lauter-Pasyuk V V, Lauter H, Aksenov V L, Yaradaikin S P, Ulyanov V A, Trounov V A, Kalinin S I 2010 J. Phys.: Conf. Ser. 251 012060

    [10]

    Orban J, Cser L, Rosta L, Torok G, Nagy A 2011 NIMA 632 124

    [11]

    Eijk C W 2002 NIMA 477 383

    [12]

    BoieJ R A, Fischer, Inagaki Y, Merritt F C, Okuno H, Radeka V 1982 NIM 200 533

    [13]

    Radeka V, Schaknowski N A, Smith G C, Yu B 1998 NIMA 419 642

    [14]

    Fried J, Harder J A, Mahler G J, Makowiecki D S, Mead J A, Radeka V, Schaknowski N A, Smith G C, Yu B 2002 NIMA 478 415

    [15]

    Doumas A, Smith G C 2012 NIMA 675 8

    [16]

    Desai S S, Desai A M 2006 NIMA 557 607

    [17]

    Wen Z W, Qi H R, Wang Y F, Sun Z J, Zhang Y L, Wang H Y, Zhang J, Ouyang Q, Chen Y B, Li Y H 2017 Acta Phys. Sin. 66 072901 (in Chinese) [温志文, 祁辉荣, 王艳凤, 孙志嘉, 张余炼, 王海云, 张建, 欧阳群, 陈元柏, 李玉红 2017 物理学报 66 072901]

    [18]

    Abuhoza A, Schmidt H R, Biswas S, Frankenfeld U, Hehner J, Schmidt C J 2013 NIMA 718 400

    [19]

    Bouclier R, Capeans M, Garabatos C, Sauli F, Silander F 1994 NIMA 350 464

    [20]

    Niebuhr C 2006 NIMA 566 118

    [21]

    Kadyk J A 1991 NIMA 300 436

  • [1] 李杭, 陈萍, 田进寿, 薛彦华, 王俊锋, 缑永胜, 张敏睿, 何凯, 徐向晏, 赛小锋, 李亚晖, 刘百玉, 王向林, 辛丽伟, 高贵龙, 汪韬, 王兴, 赵卫. 基于太赫兹脉冲加速及扫描电子束的高时间分辨探测器. 物理学报, 2022, 71(2): 028501. doi: 10.7498/aps.71.20210871
    [2] 王顺利, 王亚超, 郭道友, 李超荣, 刘爱萍. NiO/GaN p-n结紫外探测器及自供电技术. 物理学报, 2021, 70(12): 128502. doi: 10.7498/aps.70.20210154
    [3] 孙浚凯, 王军转, 施毅. 基于锥形硅纳米线色彩分辨探测能力仿真. 物理学报, 2021, 70(11): 116103. doi: 10.7498/aps.70.20202031
    [4] 南虎, 麻晓晶, 赵海博, 汤少杰, 刘卫华, 王大威, 贾春林. 基于YOLOv3框架的高分辨电镜图像原子峰位置检测. 物理学报, 2021, 70(7): 076803. doi: 10.7498/aps.70.20201502
    [5] 李杭, 陈萍, 田进寿. 基于太赫兹脉冲加速及扫描电子束的高时间分辨探测器研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210871
    [6] 高飞, 南恒帅, 黄波, 汪丽, 李仕春, 王玉峰, 刘晶晶, 闫庆, 宋跃辉, 华灯鑫. 紫外域多纵模高光谱分辨率激光雷达探测气溶胶的技术实现和系统仿真. 物理学报, 2018, 67(3): 030701. doi: 10.7498/aps.67.20172036
    [7] 温志文, 祁辉荣, 王艳凤, 孙志嘉, 张余炼, 王海云, 张建, 欧阳群, 陈元柏, 李玉红. 二维多丝室探测器读出方法的优化. 物理学报, 2017, 66(7): 072901. doi: 10.7498/aps.66.072901
    [8] 夏茂鹏, 李健军, 高冬阳, 胡友勃, 盛文阳, 庞伟伟, 郑小兵. 基于相关光子多模式相关性的InSb模拟探测器定标方法. 物理学报, 2015, 64(24): 240601. doi: 10.7498/aps.64.240601
    [9] 张美, 张显鹏, 李奎念, 盛亮, 袁媛, 宋朝晖, 李阳. 中子散射成像探测角分辨研究. 物理学报, 2015, 64(4): 042801. doi: 10.7498/aps.64.042801
    [10] 温志文, 祁辉荣, 代洪亮, 张余炼, 魏堃, 张建, 欧阳群, 邵剑雄. 一维丝室气体探测器衍射像差的修正方法研究. 物理学报, 2015, 64(8): 082901. doi: 10.7498/aps.64.082901
    [11] 吕绮雯, 郑阳恒, 田彩星, 刘福虎, 蔡啸, 方建, 高龙, 葛永帅, 刘颖彪, 孙丽君, 孙希磊, 牛顺利, 王志刚, 谢宇广, 薛镇, 俞伯祥, 章爱武, 胡涛, 吕军光. 利用ICCD定位宇宙线来测量探测器时间分辨的方法研究. 物理学报, 2012, 61(7): 072904. doi: 10.7498/aps.61.072904
    [12] 言杰, 李澄, 刘荣, 蒋励, 鹿心鑫, 王玫. 利用252 Cf快裂变室测量BC501A液闪探测器的相对探测效率和响应函数. 物理学报, 2011, 60(3): 032901. doi: 10.7498/aps.60.032901
    [13] 董静, 吕新宇, 刘贲, 刘荣光, 马骁妍, 王岚, 陈元柏, 欧阳群, 谢一冈. 基于读出条读出的二维位置灵敏气体电子倍增器的研制. 物理学报, 2010, 59(9): 6029-6035. doi: 10.7498/aps.59.6029
    [14] 张小东, 杨贺润, 段利敏, 徐瑚珊, 胡碧涛, 李春艳, 李祖玉. Micromegas探测器计数曲线、增益以及能量分辨特性的研究. 物理学报, 2008, 57(4): 2141-2144. doi: 10.7498/aps.57.2141
    [15] 张显鹏, 欧阳晓平, 张忠兵, 田 耕, 陈彦丽, 李大海, 张小东. 组合式Si-PIN 14 MeV中子探测器. 物理学报, 2008, 57(1): 82-87. doi: 10.7498/aps.57.82
    [16] 李 园, 李 刚, 张玉驰, 王晓勇, 王军民, 张天才. 计数率和分辨时间对光场统计性质测量的影响——单探测器直接测量的实验分析. 物理学报, 2006, 55(11): 5779-5783. doi: 10.7498/aps.55.5779
    [17] 杨洪琼, 朱学彬, 杨高照, 李林波, 宋献才. 用于n,γ混合场的新型脉冲中子探测器研究. 物理学报, 2004, 53(10): 3321-3325. doi: 10.7498/aps.53.3321
    [18] 崔明启, 缪建伟, 王俊, 崔聪悟, 黎刚, 朱佩平. 软X射线多层膜单色器能量分辨研究. 物理学报, 1997, 46(5): 1015-1021. doi: 10.7498/aps.46.1015
    [19] 温树林, 冯景伟. 高分辨电子显微镜研究α-Si3N4晶格缺陷. 物理学报, 1985, 34(7): 951-955. doi: 10.7498/aps.34.951
    [20] 唐璞山, 贺明霞, 陈佐禹, 王楚. 用面垒探测器测定n型硅中少数载流子的扩散长度. 物理学报, 1963, 19(7): 448-455. doi: 10.7498/aps.19.448
计量
  • 文章访问数:  4988
  • PDF下载量:  146
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-08
  • 修回日期:  2018-01-19
  • 刊出日期:  2018-04-05

/

返回文章
返回