搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

忆阻器、忆容器和忆感器的Simulink建模及其特性分析

王晓媛 俞军 王光义

引用本文:
Citation:

忆阻器、忆容器和忆感器的Simulink建模及其特性分析

王晓媛, 俞军, 王光义

Simulink modeling of memristor, memcapacitor, meminductor and their characteristics analysis

Wang Xiao-Yuan, Yu Jun, Wang Guang-Yi
PDF
导出引用
  • 忆阻器、忆容器和忆感器均是具有记忆特性的新型非线性电路元件,也被称为记忆元件.以三种电路元件的通用数学模型为依据,从数学分析的角度,对忆阻器、忆容器和忆感器的Simulink模型进行了建立.在Simulink模型中体现了记忆元件对历史状态和系统状态变量的依赖性,正确表现出其独特的记忆特性.通过一系列仿真分析,得到了忆阻器、忆容器和忆感器的元件特性,验证了模型的有效性.此外,通过对三者在不同参数、不同激励下的电路特性分析,得到了三种记忆元件等效模型随频率和幅值变化的规律,为以后忆阻器、忆容器和忆感器基于Simulink的仿真研究和应用研究奠定基础.
    Memristor, memcapacitor and meminductor are novel nonlinear circuit elements with memory, which are also known as the memory elements. Based on the mathematical models of these three circuit elements, from the point of view of mathematical analysis, memristor, memcapacitor and meminductor Simulink based models are established. Simulink models of the memory elements reflect that their values are dependent on their historical states and their state variables, and correctly show their unique memory properties. A series of simulation analyses are done, and the typical characteristics of the three memory elements are obtained, showing the validities of these models. In addition, by studying the circuit characteristics under different parameters and excitations, the changing laws of these equivalent models with frequency and amplitude are obtained, which lay the foundation for research and application based on memristor, memcapacitor and meminductor's Simulink simulator.
      通信作者: 王晓媛, youyuan-0213@163.com
    • 基金项目: 国家自然科学基金(批准号:61401134,61771176)和浙江省国家自然科学基金(批准号:LY18F010012)资助的课题.
      Corresponding author: Wang Xiao-Yuan, youyuan-0213@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61401134, 61771176) and the Natural Science Foundations of Zhejiang Province, China (Grant No. LY18F010012).
    [1]

    Chua L O 1971 IEEE Trans. Circuit Theory 18 507

    [2]

    Chua L O 2008 Memristor and Memristive System Symposium Berkeley, USA, November 21, 2008

    [3]

    Di Ventra M, Pershin Y V, Chua L O 2009 Proc. IEEE 97 1717

    [4]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [5]

    Faruque K A, Biswas B R, Rashid A B 2017 Circuits Syst. Signal Process. 36 1

    [6]

    Ali M S, Saravanan S 2017 Chin. J. Phys. 55 1953

    [7]

    Di Marco M, Forti M, Pancioni L 2017 IEEE Trans. Cybernetics 47 2970

    [8]

    Wang X Y, Iu H H C, Wang G Y, Liu W 2016 Circuits Syst. Signal Process. 35 4129

    [9]

    Njitacke Z T, Kengne J, Fotsin H B, Negou A N, Tchiotsop D 2016 Chaos Solitons Fractals 91 180

    [10]

    Pershin Y V, Di Ventra M 2010 IEEE Trans. Circuits Syst. I 57 1857

    [11]

    Biolek D, Biolek Z, Biolkova V 2011 Radioengineering 20 228

    [12]

    Sah M P, Budhathoki R K, Yang C, Kim H 2014 J. Semiconductor Technol. Sci. 14 750

    [13]

    Biolek D, Biolek Z, Biolkova V 2009 European Conference on Circuit Theory and Design Antalya, Turkey, August 23-27, 2009 p249

    [14]

    Biolek D, Biolek Z, Biolkova V 2010 Electron. Lett. 46 520

    [15]

    Biolek D, Biolek Z, Biolkova V 2011 Analog Integeated Circuit Signal Process. 66 129

    [16]

    Wang X Y, Fitch A L, Iu H H C, Sreeram V, Qi W G 2012 Chin. Phys. B 21 108501

    [17]

    Yu D S, Zhou Z, Iu H H C, Fernando T, Hu Y H 2017 IEEE Trans. Circuits Syst. Ⅱ 63 1101

    [18]

    Sah M P, Budhathoki R K, Yang C, Kim H 2014 Circuits Systems Signal Process. 33 2363

    [19]

    Wang X Y, Fitch A L, Iu H H C, Qi W G 2012 Phys. Lett. A 376 394

    [20]

    Liang Y, Yu D S, Chen H 2013 Acta Phys. Sin. 62 158501 (in Chinese) [梁燕, 于东升, 陈昊 2013 物理学报 62 158501]

    [21]

    Hu B L, Wang L D, Huang Y W, Hu X F, Zhang Y Y, Duan S K 2011 J. Southwest Univ. 33 50 (in Chinese) [胡柏林, 王丽丹, 黄艺文, 胡小方, 张宇阳, 段书凯 2011 西南大学学报 33 50]

    [22]

    Song W P, Ding S C, Ning A P 2014 J. Taiyuan Univ. Sci. Technol. 35 23 (in Chinese) [宋卫平, 丁山传, 宁爱平 2014 太原科技大学学报 35 23]

    [23]

    Duan F T, Cui B T 2015 Res. Prog. Solid State Electron. 3 231 (in Chinese) [段飞腾, 崔宝同 2015 固体电子学研究与进展 3 231]

    [24]

    He P F, Wang L D, Duan S K, Li C D 2011 J. Univ. Electron. Sci. Technol. China 40 648 (in Chinese) [何朋飞, 王丽丹, 段书凯, 李传东2011 电子科技大学学报 40 648]

    [25]

    Zhang J C, Li C D, Li C B 2012 Res. Prog. Solid State Electron. 32 239 (in Chinese) [张金铖, 李传东, 李超辈 2012 固体电子学研究与进展 32 239]

    [26]

    Ventra M D, Pershin Y V, Chua L O 2009 Proc. IEEE 97 1371

  • [1]

    Chua L O 1971 IEEE Trans. Circuit Theory 18 507

    [2]

    Chua L O 2008 Memristor and Memristive System Symposium Berkeley, USA, November 21, 2008

    [3]

    Di Ventra M, Pershin Y V, Chua L O 2009 Proc. IEEE 97 1717

    [4]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [5]

    Faruque K A, Biswas B R, Rashid A B 2017 Circuits Syst. Signal Process. 36 1

    [6]

    Ali M S, Saravanan S 2017 Chin. J. Phys. 55 1953

    [7]

    Di Marco M, Forti M, Pancioni L 2017 IEEE Trans. Cybernetics 47 2970

    [8]

    Wang X Y, Iu H H C, Wang G Y, Liu W 2016 Circuits Syst. Signal Process. 35 4129

    [9]

    Njitacke Z T, Kengne J, Fotsin H B, Negou A N, Tchiotsop D 2016 Chaos Solitons Fractals 91 180

    [10]

    Pershin Y V, Di Ventra M 2010 IEEE Trans. Circuits Syst. I 57 1857

    [11]

    Biolek D, Biolek Z, Biolkova V 2011 Radioengineering 20 228

    [12]

    Sah M P, Budhathoki R K, Yang C, Kim H 2014 J. Semiconductor Technol. Sci. 14 750

    [13]

    Biolek D, Biolek Z, Biolkova V 2009 European Conference on Circuit Theory and Design Antalya, Turkey, August 23-27, 2009 p249

    [14]

    Biolek D, Biolek Z, Biolkova V 2010 Electron. Lett. 46 520

    [15]

    Biolek D, Biolek Z, Biolkova V 2011 Analog Integeated Circuit Signal Process. 66 129

    [16]

    Wang X Y, Fitch A L, Iu H H C, Sreeram V, Qi W G 2012 Chin. Phys. B 21 108501

    [17]

    Yu D S, Zhou Z, Iu H H C, Fernando T, Hu Y H 2017 IEEE Trans. Circuits Syst. Ⅱ 63 1101

    [18]

    Sah M P, Budhathoki R K, Yang C, Kim H 2014 Circuits Systems Signal Process. 33 2363

    [19]

    Wang X Y, Fitch A L, Iu H H C, Qi W G 2012 Phys. Lett. A 376 394

    [20]

    Liang Y, Yu D S, Chen H 2013 Acta Phys. Sin. 62 158501 (in Chinese) [梁燕, 于东升, 陈昊 2013 物理学报 62 158501]

    [21]

    Hu B L, Wang L D, Huang Y W, Hu X F, Zhang Y Y, Duan S K 2011 J. Southwest Univ. 33 50 (in Chinese) [胡柏林, 王丽丹, 黄艺文, 胡小方, 张宇阳, 段书凯 2011 西南大学学报 33 50]

    [22]

    Song W P, Ding S C, Ning A P 2014 J. Taiyuan Univ. Sci. Technol. 35 23 (in Chinese) [宋卫平, 丁山传, 宁爱平 2014 太原科技大学学报 35 23]

    [23]

    Duan F T, Cui B T 2015 Res. Prog. Solid State Electron. 3 231 (in Chinese) [段飞腾, 崔宝同 2015 固体电子学研究与进展 3 231]

    [24]

    He P F, Wang L D, Duan S K, Li C D 2011 J. Univ. Electron. Sci. Technol. China 40 648 (in Chinese) [何朋飞, 王丽丹, 段书凯, 李传东2011 电子科技大学学报 40 648]

    [25]

    Zhang J C, Li C D, Li C B 2012 Res. Prog. Solid State Electron. 32 239 (in Chinese) [张金铖, 李传东, 李超辈 2012 固体电子学研究与进展 32 239]

    [26]

    Ventra M D, Pershin Y V, Chua L O 2009 Proc. IEEE 97 1371

  • [1] 王思远, 梁添寿, 时朋朋. 金属磁记忆应变诱导磁性变化的原子尺度作用机理. 物理学报, 2022, 71(19): 197502. doi: 10.7498/aps.71.20220745
    [2] 党俊坡, 江秀娟, 唐振华. 光纤基底TiNi形状记忆合金薄膜制备工艺. 物理学报, 2022, 71(3): 030701. doi: 10.7498/aps.71.20211437
    [3] 许鹏飞, 公徐路, 李毅伟, 靳艳飞. 含记忆阻尼函数的周期势系统随机共振. 物理学报, 2022, 71(8): 080501. doi: 10.7498/aps.71.20211732
    [4] 余雪玲, 陈凤翔, 相韬, 邓文, 刘嘉宁, 汪礼胜. ReSe2/WSe2记忆晶体管的光电调控和阻变特性研究. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120221154
    [5] 罗旭, 王丽红, 吕良, 曹书峰, 董学成, 赵建国. 基于面磁荷密度的金属磁记忆检测正演模型. 物理学报, 2022, 71(15): 154101. doi: 10.7498/aps.71.20220176
    [6] 余雪玲, 陈凤翔, 相韬, 邓文, 刘嘉宁, 汪礼胜. ReSe2/WSe2记忆晶体管的光电调控和阻变特性. 物理学报, 2022, 71(21): 217302. doi: 10.7498/aps.71.20221154
    [7] 扶龙香, 贺少波, 王会海, 孙克辉. 离散忆阻混沌系统的Simulink建模及其动力学特性分析. 物理学报, 2022, 71(3): 030501. doi: 10.7498/aps.71.20211549
    [8] 党俊坡, 江秀娟, 唐振华. 光纤基底TiNi形状记忆合金薄膜制备工艺研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211437
    [9] 郑辞晏, 庄楚源, 李亚, 练明坚, 梁燕, 于东升. 一种新型浮地记忆元件建模方法及实现. 物理学报, 2021, 70(23): 238501. doi: 10.7498/aps.70.20211021
    [10] 扶龙香, 贺少波, 王会海, 孙克辉. 离散忆阻混沌系统的Simulink建模及其动力学特性分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211549
    [11] 王晨阳, 段倩倩, 周凯, 姚静, 苏敏, 傅意超, 纪俊羊, 洪鑫, 刘雪芹, 汪志勇. 基于遗传算法优化卷积长短记忆混合神经网络模型的光伏发电功率预测. 物理学报, 2020, 69(10): 100701. doi: 10.7498/aps.69.20191935
    [12] 岳晓乐, 向以琳, 张莹. 形状记忆合金薄板系统全局激变现象分析. 物理学报, 2019, 68(18): 180501. doi: 10.7498/aps.68.20190155
    [13] 刘汝新, 董瑞新, 闫循领, 肖夏. 忆阻器单阻态下的记忆电容行为及多态特性. 物理学报, 2019, 68(6): 068502. doi: 10.7498/aps.68.20181836
    [14] 邵楠, 张盛兵, 邵舒渊. 具有感觉记忆的忆阻器模型. 物理学报, 2019, 68(1): 018501. doi: 10.7498/aps.68.20181577
    [15] 李志军, 曾以成, 谭志平. 一个通用的记忆器件模拟器. 物理学报, 2014, 63(9): 098501. doi: 10.7498/aps.63.098501
    [16] 刘洪涛, 孙光爱, 王沿东, 陈波, 汪小琳. 冲击诱发NiTi形状记忆合金相变行为研究. 物理学报, 2013, 62(1): 018103. doi: 10.7498/aps.62.018103
    [17] 邝玉兰, 唐国宁. 利用短期心脏记忆消除螺旋波和时空混沌. 物理学报, 2012, 61(19): 190501. doi: 10.7498/aps.61.190501
    [18] 刘娟, 高洁. 甲型流感病毒DNA序列的长记忆ARFIMA模型. 物理学报, 2011, 60(4): 048702. doi: 10.7498/aps.60.048702
    [19] 于淑云, 刘何燕, 曲静萍, 李养贤, 柳祝红, 陈京兰, 代学芳, 吴光恒. 掺Mn对NiFeGa磁性形状记忆材料单晶特性的影响. 物理学报, 2006, 55(6): 3022-3025. doi: 10.7498/aps.55.3022
    [20] 董林荣. 相互作用herding模型:记忆与遗忘. 物理学报, 2006, 55(8): 4046-4050. doi: 10.7498/aps.55.4046
计量
  • 文章访问数:  9798
  • PDF下载量:  667
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-17
  • 修回日期:  2018-02-18
  • 刊出日期:  2018-05-05

/

返回文章
返回