搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

油膜覆盖的非线性海面电磁散射多普勒谱特性研究

王蕊 郭立新 张策

引用本文:
Citation:

油膜覆盖的非线性海面电磁散射多普勒谱特性研究

王蕊, 郭立新, 张策

Doppler spectrum simulation of nonlinear ocean covered by oil film

Wang Rui, Guo Li-Xin, Zhang Ce
PDF
导出引用
  • 当海面上方漂浮油膜时,海面的毛细波成分将因油膜的阻尼作用而被破坏.本文采用PM谱,基于Marangoni阻尼效应,建立油膜覆盖的一维Creamer非线性海面模型,并简单分析了油膜的阻尼作用对海面轮廓的影响.在此基础上,利用迭代物理光学方法研究了L波段下该模型的后向散射回波的多普勒谱特性,通过与基于线性模型的海面散射回波多普勒谱对比发现,在大中入射角下,非线性海面散射回波与线性海面多普勒谱的差异不可忽略,说明采用Creamer非线性理论建立海面几何模型的必要性.研究发现,油膜覆盖海面的散射回波的多普勒频移及展宽与干净海面雷达回波的多普勒特性具有明显差异,这表明海面上漂浮的油膜对雷达散射回波的多普勒特性具有显著的影响.数值结果重点分析了入射角、油膜参数以及风速对油膜覆盖海面散射回波多普勒谱展宽和频移的影响规律.
    In recent years, marine oil spill has become an important disaster for marine environment. Marine oil spill quantity is an important indicator for evaluating the threat of oil spill. This paper focuses on the Doppler spectrum of one-dimensional (1D) nonlinear ocean covered by oil film. Oil film damps the capillary wave of the ocean, which leads to a smooth profile of the ocean covered by the film. The paper is devoted to the detailed analysis of the electromagnetic magnetic wave scattering from a sea that is covered with oil. More precisely, it focuses on the case of homogeneous oil slicks. This allows better detection of oil spills, as well as possibly an estimation of the amount of oil spilled, as the scattering coefficient depends on the layer thickness. The 1D Creamer nonlinear ocean is proposed based on the PM spectra. The Marangoni damping effect is considered for modeling the contaminated rough ocean surface. First, the influence of oil film on the ocean surface spectrum and geometrical structure are examined briefly in the present study. On this basis, the influence of oil film on the Doppler spectrum signature (in L-band) of the backscattered echo of the clean and contaminated rough ocean are studied in detail based on the iterative physical optics. The results of the Doppler spectrum signature including Doppler shift and spectral bandwidth of the backscattered echo from Creamer nonlinear ocean surface are different from those of the linear ocean surface especially at the big and moderate incident angles, which shows that it is necessary to adopt the Creamer nonlinear model in the paper. The simulation results show that the Doppler spectrum signatures including Doppler shift and spectral bandwidth of the echo from ocean covered by oil film are significantly affected by sea slicks. The influence of some important parameters, such as wind speed, oil-damping values and incident angles on Doppler spectrum signature is investigated and discussed in detail. Moreover, simulation results indicate that the Doppler spectrum signature is a promising technique for the remote sensing of oil films floating on sea surfaces.
      通信作者: 郭立新, lxguo@xidian.edu.cn
    • 基金项目: 陕西省省基金(批准号:2018JQ6045)、上海航天科技创新基金资助项目和国家自然科学基金重点项目(批准号:61431010,61701428)资助的课题.
      Corresponding author: Guo Li-Xin, lxguo@xidian.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of Shaanxi Province, China (Grant No. 2018JQ6045), Shanghai Aerospace Science and Technology Innovation Foundation, and the National Natural Science Foundation of China (Grant Nos. 61431010, 61701428).
    [1]

    Sackett W M 1977 J. Geochem. Explor. 7 243

    [2]

    Acinas J R, Brebbia C A 1997 Computer Modeling of Seas and Coastal Regions Ⅲ (Southampton Boston: Computation Mechanics Publication) pp4-8

    [3]

    Gade M, Alpers W, Hhnerfuss H 1998 Remote Sens. Environ. 66 52

    [4]

    Ermakov S A, Sergievskaya L A, Zuikova E M 2000 Proc. IEEE IGARSS 2000 1513

    [5]

    Ermakov S A, Sergievskaya L A, Shchegolkov Y B 2002 Proc. IEEE IGARSS 2002 2986

    [6]

    Ye H X, Jin Y Q 2007 IEEE Trans. Geosci. Remote Sens. 45 1174

    [7]

    Zhang M, Liao C, Xiong X Z 2017 IEEE Trans. Antennas Propag. 16 364

    [8]

    Liu P, Jin Y Q 2004 IEEE Trans. Antennas Propag. 52 1205

    [9]

    Li J, Guo L X, Zeng H, Han X B 2009 Chin. Phys. B 18 2757

    [10]

    Yang P J, Guo L X 2016 J. Quant. Spectrosc. Radiat. Transfer 184 193

    [11]

    Nunziata F, Sobieski P, Migliaccio M 2009 IEEE Trans. Geosci. Remote Sens. 47 1949

    [12]

    Pinel N, Bourlier C, Sergievskaya I 2014 IEEE Trans. Geosci. Remote Sens. 52 2326

    [13]

    Pinel N, Déchamps N, Bourlier C 2008 IEEE Trans. Geosci. Remote Sens. 46 385

    [14]

    Ghanmi H, Khenchaf A, Comblet F 2015 J. Appl. Remote. Sens. 9 096007

    [15]

    Plant W J 1997 J. Geophys. Res. 102 21131

    [16]

    Caponi E A, Lake B, Yuen H C 1999 IEEE Trans. Antennas Propag. 47 354

    [17]

    Plant W J, Farquharson G 2012 J. Geophys. Res. 117 C08010

    [18]

    Cini R, Lombardini P P, hnerfuss H H 1983 Int. J. Remote Sens. 4 101

    [19]

    Lombardini P P, Fiscella B, Trivero P 1989 J. Atmos. Ocean. Technol. 6 882

    [20]

    Thorsos E I 1998 J. Acoust. Soc. Am. 83 78

    [21]

    Creamer D B, Henyey F, Schult R 1989 J. Fluid Mech. 205 135

    [22]

    Wang R, Guo L X 2016 IEEE Trans. Geosci. Remote Sens. Lett. 13 500

    [23]

    Wang R, Guo L X 2015 Int. J. Remote Sens. 36 845

    [24]

    Li X F, Xu X J 2011 IEEE Trans. Geosci. Remote Sens. 49 603

    [25]

    Toporkov J V, Brown G S 2000 IEEE Trans. Geosci. Remote Sens. 38 1616

    [26]

    Ye H X, Jin Y Q 2005 IEEE Trans. Antennas Propag. 53 1234

    [27]

    Gotwols B L, Chapman R D, Thompson D R 2000 Doppler Spectra and Backscatter Cross Section Voer 45°-85° Incidence, NATO/RTO Symposium 2000 p1

  • [1]

    Sackett W M 1977 J. Geochem. Explor. 7 243

    [2]

    Acinas J R, Brebbia C A 1997 Computer Modeling of Seas and Coastal Regions Ⅲ (Southampton Boston: Computation Mechanics Publication) pp4-8

    [3]

    Gade M, Alpers W, Hhnerfuss H 1998 Remote Sens. Environ. 66 52

    [4]

    Ermakov S A, Sergievskaya L A, Zuikova E M 2000 Proc. IEEE IGARSS 2000 1513

    [5]

    Ermakov S A, Sergievskaya L A, Shchegolkov Y B 2002 Proc. IEEE IGARSS 2002 2986

    [6]

    Ye H X, Jin Y Q 2007 IEEE Trans. Geosci. Remote Sens. 45 1174

    [7]

    Zhang M, Liao C, Xiong X Z 2017 IEEE Trans. Antennas Propag. 16 364

    [8]

    Liu P, Jin Y Q 2004 IEEE Trans. Antennas Propag. 52 1205

    [9]

    Li J, Guo L X, Zeng H, Han X B 2009 Chin. Phys. B 18 2757

    [10]

    Yang P J, Guo L X 2016 J. Quant. Spectrosc. Radiat. Transfer 184 193

    [11]

    Nunziata F, Sobieski P, Migliaccio M 2009 IEEE Trans. Geosci. Remote Sens. 47 1949

    [12]

    Pinel N, Bourlier C, Sergievskaya I 2014 IEEE Trans. Geosci. Remote Sens. 52 2326

    [13]

    Pinel N, Déchamps N, Bourlier C 2008 IEEE Trans. Geosci. Remote Sens. 46 385

    [14]

    Ghanmi H, Khenchaf A, Comblet F 2015 J. Appl. Remote. Sens. 9 096007

    [15]

    Plant W J 1997 J. Geophys. Res. 102 21131

    [16]

    Caponi E A, Lake B, Yuen H C 1999 IEEE Trans. Antennas Propag. 47 354

    [17]

    Plant W J, Farquharson G 2012 J. Geophys. Res. 117 C08010

    [18]

    Cini R, Lombardini P P, hnerfuss H H 1983 Int. J. Remote Sens. 4 101

    [19]

    Lombardini P P, Fiscella B, Trivero P 1989 J. Atmos. Ocean. Technol. 6 882

    [20]

    Thorsos E I 1998 J. Acoust. Soc. Am. 83 78

    [21]

    Creamer D B, Henyey F, Schult R 1989 J. Fluid Mech. 205 135

    [22]

    Wang R, Guo L X 2016 IEEE Trans. Geosci. Remote Sens. Lett. 13 500

    [23]

    Wang R, Guo L X 2015 Int. J. Remote Sens. 36 845

    [24]

    Li X F, Xu X J 2011 IEEE Trans. Geosci. Remote Sens. 49 603

    [25]

    Toporkov J V, Brown G S 2000 IEEE Trans. Geosci. Remote Sens. 38 1616

    [26]

    Ye H X, Jin Y Q 2005 IEEE Trans. Antennas Propag. 53 1234

    [27]

    Gotwols B L, Chapman R D, Thompson D R 2000 Doppler Spectra and Backscatter Cross Section Voer 45°-85° Incidence, NATO/RTO Symposium 2000 p1

  • [1] 张爱霞, 姜艳芳, 薛具奎. 光晶格中自旋轨道耦合玻色-爱因斯坦凝聚体的非线性能谱特性. 物理学报, 2021, 70(20): 200302. doi: 10.7498/aps.70.20210705
    [2] 周剑宏, 童宝宏, 王伟, 苏家磊. 油滴撞击油膜层内气泡的变形与破裂过程的数值模拟. 物理学报, 2018, 67(11): 114701. doi: 10.7498/aps.67.20180133
    [3] 张金鹏, 张玉石, 李清亮, 吴家骥. 基于不同散射机制特征的海杂波时变多普勒谱模型. 物理学报, 2018, 67(3): 034101. doi: 10.7498/aps.67.20171612
    [4] 吴量, 陈方, 黄重阳, 丁国辉, 丁义明. 基于改进非线性拟合的核磁共振T2谱多指数反演. 物理学报, 2016, 65(10): 107601. doi: 10.7498/aps.65.107601
    [5] 李文龙, 郭立新, 孟肖, 刘伟. 含卷浪Pierson-Moscowitz谱海面电磁散射研究. 物理学报, 2014, 63(16): 164102. doi: 10.7498/aps.63.164102
    [6] 吴庚坤, 姬光荣, 姬婷婷, 任红霞. 基于文氏改进谱的二维粗糙海面模型及其电磁散射研究. 物理学报, 2014, 63(13): 134203. doi: 10.7498/aps.63.134203
    [7] 贾楠, 李唐军, 孙剑, 钟康平, 王目光. 高非线性光纤正常色散区利用皮秒脉冲产生超连续谱的相干特性. 物理学报, 2014, 63(8): 084203. doi: 10.7498/aps.63.084203
    [8] 周杰, 王亚林, 菊池久和. 三维空间域多普勒功率谱及其多天线系统性能. 物理学报, 2014, 63(24): 240507. doi: 10.7498/aps.63.240507
    [9] 毛媛, 郭立新, 丁慧芬, 刘伟. 基于高频雷达多普勒谱预测风向的一种新方法. 物理学报, 2012, 61(4): 044201. doi: 10.7498/aps.61.044201
    [10] 姜文正, 袁业立, 运华, 张彦敏. 海面微波散射场多普勒谱特性研究. 物理学报, 2012, 61(12): 124213. doi: 10.7498/aps.61.124213
    [11] 刘卫华, 宋啸中, 王屹山, 刘红军, 赵 卫, 刘雪明, 彭钦军, 许祖彦. 飞秒激光脉冲在高非线性光子晶体光纤中产生超连续谱的实验研究. 物理学报, 2008, 57(2): 917-922. doi: 10.7498/aps.57.917
    [12] 郭立新, 王 蕊, 王运华, 吴振森. 二维粗糙海面散射回波多普勒谱频移及展宽特征. 物理学报, 2008, 57(6): 3464-3472. doi: 10.7498/aps.57.3464
    [13] 杨俊岭, 郭立新, 万建伟. 基于未充分发展海谱的分形海面模型及其电磁散射研究. 物理学报, 2007, 56(4): 2106-2114. doi: 10.7498/aps.56.2106
    [14] 詹杰民, 林 东, 李毓湘. 线性与非线性波的Chebyshev广义有限谱模拟. 物理学报, 2007, 56(7): 3649-3654. doi: 10.7498/aps.56.3649
    [15] 郭立新, 王运华, 吴振森. 双尺度动态分形粗糙海面的电磁散射及多普勒谱研究. 物理学报, 2005, 54(1): 96-101. doi: 10.7498/aps.54.96
    [16] 成纯富, 王晓方, 鲁 波. 飞秒光脉冲在光子晶体光纤中的非线性传输和超连续谱产生. 物理学报, 2004, 53(6): 1826-1830. doi: 10.7498/aps.53.1826
    [17] 冯健, 王继锁, 高云峰, 詹明生. 光场及原子-光场耦合的非线性对腔内原子辐射谱的影响. 物理学报, 2001, 50(7): 1279-1283. doi: 10.7498/aps.50.1279
    [18] 马 涛, 倪致祥. 两类新的条件精确可解势及其非线性谱生成代数. 物理学报, 1999, 48(6): 987-991. doi: 10.7498/aps.48.987
    [19] 庞小峰. 水的非线性振动能谱的自陷理论计算. 物理学报, 1994, 43(12): 1987-1996. doi: 10.7498/aps.43.1987
    [20] 甘子钊, 杨国桢. 关于激子谱线近傍的三阶非线性光学系数. 物理学报, 1982, 31(4): 503-509. doi: 10.7498/aps.31.503
计量
  • 文章访问数:  4272
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-25
  • 修回日期:  2018-09-27
  • 刊出日期:  2019-11-20

/

返回文章
返回