搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于磁激元效应的石墨烯-金属纳米结构近红外吸收研究

陈浩 张晓霞 王鸿 姬月华

引用本文:
Citation:

基于磁激元效应的石墨烯-金属纳米结构近红外吸收研究

陈浩, 张晓霞, 王鸿, 姬月华

Near-infrared absorption of graphene-metal nanostructure based on magnetic polaritons

Chen Hao, Zhang Xiao-Xia, Wang Hong, Ji Yue-Hua
PDF
导出引用
  • 石墨烯作为一种单层碳原子二维材料,在可见光和近红外波段吸收率只有2.3%左右,这限制了石墨烯在光电探测、光电调制等领域的应用.本文基于纳米超材料结构的磁激元共振效应,设计了一种金属-绝缘层-金属-石墨烯混合二维浅光栅结构,通过设计混合二维浅光栅结构尺寸来改变石墨烯化学势,实现了石墨烯在近红外波段的吸收增强和调制.利用有限元仿真和等效电路模型,系统地分析了非正入射、结构参数和石墨烯化学势对吸收特性的影响.研究结果表明,混合二维浅光栅结构的磁激元共振效应可以明显提升石墨烯在近红外波段的吸收率,并且对入射角度和极化方向不敏感.在特定结构参数下,混合二维浅光栅结构在1480 nm处吸收率达到了85%,其中石墨烯的吸收率为55%,提升了24倍;通过调控石墨烯化学势从0.1 eV增大到1.0 eV,分别实现了不同结构尺寸下54.8%,50.3%,46.8%的反射率调制深度.
    As a two-dimensional material with single-layer carbon atoms, the absorptivity of graphene is only about 2.3% in visible and near-infrared region, which restricts its applications in photoelectric detection, modulation and solar cells. A way to enhance the graphene absorption in this wavelength region is to combine graphene with grating nanostructure. The grating nanostructure can generate strong near-field localization by magnetic polaritons (MPs). However, the existing structures based on MPs are facing some problems, such as sensitivity to the polarization direction of the incoming wave and difficulty in processing the deep grating. Moreover, the modulation effect of the hybrid nanostructure based on MPs combining graphene with nano-grating has not been studied. In this work, a hybrid two-dimensional shallow grating nanostructure is proposed to modulate the absorptivity of graphene based on MPs. The finite element simulation is conducted to calculate the absorptive properties. The equivalent circuit model is used to predict the resonance conditions. The current and field distributions further confirm the excitation of magnetic resonance. The influences of structural parameters and the chemical potential on absorption property are studied. The results show that the magnetic polaritons derived from the hybrid two-dimensional shallow grating structure can obviously improve the absorption of graphene in the near-infrared region. Under the specific structure, the overall absorptivity of the structure is 85%, and the absorptivity of graphene in the structure is 55%, which is over 24 times higher than that of free-standing monolayer graphene. The absorption spectra of the hybrid grating nanostructure for different geometric parameters are calculated. The results show that the absorption peak presents an obvious blue-shift as the thickness of the dielectric layer, the grating period or the width of the silver nanoparticles decrease. Numerical simulation results show that by adjusting the chemical potential of graphene, the overall absorptivity of the structure can be tuned dynamically. The reflection modulation depths of hybrid two-dimensional nanostructure under different structural parameters are calculated. By controlling the chemical potential of graphene in a range from 0.1 eV to 1 eV, the reflection modulation depths of 54.8% (1040 nm), 50.3% (890 nm) and 46.8% (750 nm) are obtained, respectively. Compared with the existing structures based on MPs, the present structure is insensitive to the incidence and polarization direction of the incident electromagnetic wave due to the symmetry in two-dimensional directions. Considering the design of shallow silver grating, the structure is easier to implement in the process. The research results provide good theoretical reference for graphene-based photoelectric detection and modulation.
      通信作者: 张晓霞, xxzhang@uestc.edu.cn
    • 基金项目: 国家自然科学基金重点项目(批准号:61435010)和国家自然科学基金创新研究群体科学基金(批准号:61421002)资助的课题.
      Corresponding author: Zhang Xiao-Xia, xxzhang@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61435010) and the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 61421002).
    [1]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [2]

    Neto A H C, Guinea F, Peres N M R 2009 Rev. Mod. Phys. 81 109

    [3]

    Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nat. Photon. 4 611

    [4]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J 2008 Solid State Commun. 146 351

    [5]

    Xia F N, Mueller T, Lin Y M, Valdes-Garcia A, Avouris P 2009 Nature Nanotech. 4 839

    [6]

    Bao Q, Loh K P 2012 ACS Nano 6 3677

    [7]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R 2008 Science 320 1308

    [8]

    Hong B H 2009 Nature 457 706

    [9]

    Liu W Z, Wang W, Xu H Y, Li X H, Yang L, Ma J G, Liu Y C 2015 Appl. Phys. Lett. 8 095202

    [10]

    Horng J, Chen C F, Geng B S, Girit C, et al. 2012 Phys. Rev. B: Condens. Matter 83 165113

    [11]

    Li E P, Chu H S, Wu L, Koh W S 2010 Opt. Express 18 14395

    [12]

    Zhang H Y, Huang X Y, Chen Q, Ding C F, Li T T, L H H, Xu S L, Zhang X, Zhang Y P, Yao J Q 2016 Acta Phys. Sin. 65 018101(in Chinese) [张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨 2016 物理学报 65 018101]

    [13]

    Alaee R, Farhat M, Rockstuhl C, Lederer F 2012 Opt. Express 20 28017

    [14]

    Ju L, Geng B, Horng J, Girit, Martin M 2011 Nature Nanotech. 6 630

    [15]

    Thongrattanasiri S, Koppens F H, Garcia de Abajo F J 2012 Phys. Rev. Lett. 108 047401

    [16]

    Gao W, Shi G, Jin Z, Shu J, Zhang Q 2013 Nano Lett. 13 3698

    [17]

    Marco F, Alexander U, Andreas P, Govinda L, Karl U, Hermann D, Pavel K, Asron M A, Werner S, Gottfried S, Thomas M 2012 Nano Lett. 12 2773

    [18]

    Liang Z J, Liu H X, Niu Y X, Yin Y H 2016 Acta Phys. Sin. 65 138501(in Chinese) [梁振江, 刘海霞, 牛燕雄, 尹贻恒 2016 物理学报 65 138501]

    [19]

    Maillard M, Huang P, Brus L 2003 Nano Lett. 3 1611

    [20]

    Zhao B, Wang L, Shuai Y, Zhang Z M 2013 Int. J. Heat Mass Transfer 67 637

    [21]

    Zhao J M, Zhang Z M 2015 J. Quant. Spectrosc. Radiat. Transfer 151 49

    [22]

    Fang Z, Wang Y, Liu Z, Schlather A, Ajayan P M, Koppens F H, Nordlander P, Halas N J 2012 ACS Nano 6 10222

    [23]

    Cai Y J, Zhu J F, Liu Q H 2015 Appl. Phys. Lett. 106 043105

    [24]

    Cai Y J, Zhu J F, Liu Q H, Lin T, Zhou J Y, Ye L F, Cai Z P 2015 Opt. Express 23 32318

    [25]

    Zhao B, Zhao J M, Zhang Z M 2015 J. Opt. Soc. Am. B: Opt. Phys. 32 1176

    [26]

    Zhao B, Zhao J M, Zhang Z M 2014 Appl. Phys. Lett. 105 031905

    [27]

    Zhao B, Zhang Z M 2014 J. Quant. Spectrosc. Radiat. Transfer 135 81

    [28]

    Wunsch B, Stauber T, Sols F, Guinea F 2006 New J. Phys. 8 318

    [29]

    Hwang E H, Sarma S D 2007 Phys. Rev. B 75 205418

    [30]

    Falkovsky L A 2008 J. Phys. Conf. Ser. 129 012004

    [31]

    Vakil A, Engheta N 2011 Science 332 1291

    [32]

    Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B: Condens. Matter 79 125104

  • [1]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [2]

    Neto A H C, Guinea F, Peres N M R 2009 Rev. Mod. Phys. 81 109

    [3]

    Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nat. Photon. 4 611

    [4]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J 2008 Solid State Commun. 146 351

    [5]

    Xia F N, Mueller T, Lin Y M, Valdes-Garcia A, Avouris P 2009 Nature Nanotech. 4 839

    [6]

    Bao Q, Loh K P 2012 ACS Nano 6 3677

    [7]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R 2008 Science 320 1308

    [8]

    Hong B H 2009 Nature 457 706

    [9]

    Liu W Z, Wang W, Xu H Y, Li X H, Yang L, Ma J G, Liu Y C 2015 Appl. Phys. Lett. 8 095202

    [10]

    Horng J, Chen C F, Geng B S, Girit C, et al. 2012 Phys. Rev. B: Condens. Matter 83 165113

    [11]

    Li E P, Chu H S, Wu L, Koh W S 2010 Opt. Express 18 14395

    [12]

    Zhang H Y, Huang X Y, Chen Q, Ding C F, Li T T, L H H, Xu S L, Zhang X, Zhang Y P, Yao J Q 2016 Acta Phys. Sin. 65 018101(in Chinese) [张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨 2016 物理学报 65 018101]

    [13]

    Alaee R, Farhat M, Rockstuhl C, Lederer F 2012 Opt. Express 20 28017

    [14]

    Ju L, Geng B, Horng J, Girit, Martin M 2011 Nature Nanotech. 6 630

    [15]

    Thongrattanasiri S, Koppens F H, Garcia de Abajo F J 2012 Phys. Rev. Lett. 108 047401

    [16]

    Gao W, Shi G, Jin Z, Shu J, Zhang Q 2013 Nano Lett. 13 3698

    [17]

    Marco F, Alexander U, Andreas P, Govinda L, Karl U, Hermann D, Pavel K, Asron M A, Werner S, Gottfried S, Thomas M 2012 Nano Lett. 12 2773

    [18]

    Liang Z J, Liu H X, Niu Y X, Yin Y H 2016 Acta Phys. Sin. 65 138501(in Chinese) [梁振江, 刘海霞, 牛燕雄, 尹贻恒 2016 物理学报 65 138501]

    [19]

    Maillard M, Huang P, Brus L 2003 Nano Lett. 3 1611

    [20]

    Zhao B, Wang L, Shuai Y, Zhang Z M 2013 Int. J. Heat Mass Transfer 67 637

    [21]

    Zhao J M, Zhang Z M 2015 J. Quant. Spectrosc. Radiat. Transfer 151 49

    [22]

    Fang Z, Wang Y, Liu Z, Schlather A, Ajayan P M, Koppens F H, Nordlander P, Halas N J 2012 ACS Nano 6 10222

    [23]

    Cai Y J, Zhu J F, Liu Q H 2015 Appl. Phys. Lett. 106 043105

    [24]

    Cai Y J, Zhu J F, Liu Q H, Lin T, Zhou J Y, Ye L F, Cai Z P 2015 Opt. Express 23 32318

    [25]

    Zhao B, Zhao J M, Zhang Z M 2015 J. Opt. Soc. Am. B: Opt. Phys. 32 1176

    [26]

    Zhao B, Zhao J M, Zhang Z M 2014 Appl. Phys. Lett. 105 031905

    [27]

    Zhao B, Zhang Z M 2014 J. Quant. Spectrosc. Radiat. Transfer 135 81

    [28]

    Wunsch B, Stauber T, Sols F, Guinea F 2006 New J. Phys. 8 318

    [29]

    Hwang E H, Sarma S D 2007 Phys. Rev. B 75 205418

    [30]

    Falkovsky L A 2008 J. Phys. Conf. Ser. 129 012004

    [31]

    Vakil A, Engheta N 2011 Science 332 1291

    [32]

    Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B: Condens. Matter 79 125104

  • [1] 王伟华. 二维有限元方法研究石墨烯环中磁等离激元. 物理学报, 2023, 72(8): 087301. doi: 10.7498/aps.72.20222467
    [2] 白占斌, 王锐, 周亚洲, 吴天如, 葛建雷, 李晶, 秦宇远, 费付聪, 曹路, 王学锋, 王欣然, 张帅, 孙力玲, 宋友, 宋凤麒. 石墨烯中选择性增强Kane-Mele型自旋-轨道相互作用. 物理学报, 2022, 71(6): 067202. doi: 10.7498/aps.71.20211815
    [3] 沈艳丽, 史冰融, 吕浩, 张帅一, 王霞. 基于石墨烯的Au纳米颗粒增强染料随机激光. 物理学报, 2022, 71(3): 034206. doi: 10.7498/aps.71.20211613
    [4] 王波, 张纪红, 李聪颖. 石墨烯增强半导体态二氧化钒近场热辐射. 物理学报, 2021, 70(5): 054207. doi: 10.7498/aps.70.20201360
    [5] 白占斌, 王锐, 周亚洲, Tianru Wu(吴天如), 葛建雷, 李晶, 秦宇远, 费付聪, 曹路, 王学锋, 王欣然, 张帅, 孙力玲, 宋友, 宋凤麒. 石墨烯中选择性增强Kane-Mele型自旋轨道相互作用. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211815
    [6] 赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦. 等离激元增强的石墨烯光吸收. 物理学报, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [7] 王晓, 黄生祥, 罗衡, 邓联文, 吴昊, 徐运超, 贺君, 贺龙辉. 镍层间掺杂多层石墨烯的电子结构及光吸收特性研究. 物理学报, 2019, 68(18): 187301. doi: 10.7498/aps.68.20190523
    [8] 王天会, 李昂, 韩柏. 石墨炔/石墨烯异质结纳米共振隧穿晶体管第一原理研究. 物理学报, 2019, 68(18): 187102. doi: 10.7498/aps.68.20190859
    [9] 江孝伟, 武华, 袁寿财. 基于金属光栅实现石墨烯三通道光吸收增强. 物理学报, 2019, 68(13): 138101. doi: 10.7498/aps.68.20182173
    [10] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱. 物理学报, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [11] 高健, 桑田, 李俊浪, 王啦. 利用窄刻槽金属光栅实现石墨烯双通道吸收增强. 物理学报, 2018, 67(18): 184210. doi: 10.7498/aps.67.20180848
    [12] 莫军, 冯国英, 杨莫愁, 廖宇, 周昊, 周寿桓. 基于石墨烯的宽带全光空间调制器. 物理学报, 2018, 67(21): 214201. doi: 10.7498/aps.67.20180307
    [13] 卢亚鑫, 马宁. 耦合电磁场对石墨烯量子磁振荡的影响. 物理学报, 2016, 65(2): 027502. doi: 10.7498/aps.65.027502
    [14] 毕卫红, 王圆圆, 付广伟, 王晓愚, 李彩丽. 基于石墨烯涂覆空心光纤电光调制特性的研究. 物理学报, 2016, 65(4): 047801. doi: 10.7498/aps.65.047801
    [15] 张超杰, 周婷, 杜鑫鹏, 王同标, 刘念华. 利用石墨烯等离激元与表面声子耦合增强量子摩擦. 物理学报, 2016, 65(23): 236801. doi: 10.7498/aps.65.236801
    [16] 许杰, 周丽, 黄志祥, 吴先良. 含石墨烯临界耦合谐振器的吸收特性研究. 物理学报, 2015, 64(23): 238103. doi: 10.7498/aps.64.238103
    [17] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [18] 张保磊, 王家序, 肖科, 李俊阳. 石墨烯-纳米探针相互作用有限元准静态计算. 物理学报, 2014, 63(15): 154601. doi: 10.7498/aps.63.154601
    [19] 谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛. 光子晶体增强石墨烯THz吸收. 物理学报, 2014, 63(5): 057803. doi: 10.7498/aps.63.057803
    [20] 郭东明, 杨玲珍, 王安帮, 张秀娟, 王云才. 反馈强度调制增强混沌光通信的保密性. 物理学报, 2009, 58(12): 8275-8280. doi: 10.7498/aps.58.8275
计量
  • 文章访问数:  6254
  • PDF下载量:  217
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-26
  • 修回日期:  2018-03-09
  • 刊出日期:  2018-06-05

/

返回文章
返回