搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自吸收量化的激光诱导等离子体表征方法

赵法刚 张宇 张雷 尹王保 董磊 马维光 肖连团 贾锁堂

引用本文:
Citation:

基于自吸收量化的激光诱导等离子体表征方法

赵法刚, 张宇, 张雷, 尹王保, 董磊, 马维光, 肖连团, 贾锁堂

Laser-induced plasma characterization using self-absorption quantification method

Zhao Fa-Gang, Zhang Yu, Zhang Lei, Yin Wang-Bao, Dong Lei, Ma Wei-Guang, Xiao Lian-Tuan, Jia Suo-Tang
PDF
导出引用
  • 为了表征激光诱导等离子体的定量特征参数,提出了一种谱线自吸收量化的方法,通过获得分析元素谱线的半高全宽来量化谱线自吸收程度,进而得到等离子体的特征参数,包括电子温度、元素含量比以及辐射物质的绝对数密度.与传统激光诱导击穿光谱定量分析方法相比,新方法由于计算过程与谱线强度弱相关,所以分析结果基本不受自吸收效应的影响,同时也无需额外的光谱效率校准.基于铝锂合金的实验结果表明,该方法能够实现精确的相对定量分析和等离子体的特性诊断.
    Laser-induced breakdown spectroscopy (LIBS) is a well-known analytical technique based on the atomic emission spectroscopy.The elemental composition and relative abundance information can be obtained by analyzing the plasma radiation generated by focusing high-energy pulsed laser on the sample.It has a wide range of applications due to its many advantages,such as minimal-to-no sample preparation,broad applicability,and in-situ capability.But in LIBS,the self-absorption effect of the emitted line can reduce the spectral line intensity,and then affect the precision and accuracy of LIBS quantitative analysis.So there are many methods and researches to reduce or eliminate the adverse effects of selfabsorption on spectral lines.In this paper,a self-absorption quantification analysis method is proposed to characterize the laser-induced plasma quantitative parameters.This self-absorption quantification analysis method,which utilizes the intensity independent information in the self-absorbed spectral lines,is proposed to characterize the induced plasma and perform quantitative measurements.The plasma characteristics including electron temperature,elemental concentration ratio,and absolute species number density can be derived directly through quantifying the self-absorption degree of the analytical spectral lines.Compared with the traditional laser-induced breakdown spectroscopy,the new method is weakly related to the spectral intensity:neither the analysis results are affected by the self-absorption effects,nor the additional spectral efficiency calibration is required.The LIBS spectrum of an aluminum-lithium alloy (nominal weight compositions are Al 94.6%,Mg 1.8%,Li 0.8%,Cu 2.59%,and Mn 0.21%) is used to calculate the spatiallyaveraged electron temperature and the concentration ratio between Mg and Al,and the species number densities is obtained by using the proposed self-absorption quantification method.The results of experiment on aluminum-lithium alloy show that the mean electron temperatures obtained by the modified Saha-Boltzmann plots determined by Mg and Al are 0.96 eV and 0.97 eV,respectively.The weight ratio wMg/wAl in the plasma is calculated to be 0.0171,which is approximately coincident with the nominal value of 0.0169.The absolute singly ionized number density of matrix element Al is 1:65×1017 cm-3,which is comparable to the electron density calculated from the Hα line broadening (1:72×1017 cm-3).Evidently,the free electrons present in the plasma are mainly contributed by the singly ionized matrix element Al.These experimental results of aluminum-lithium alloy validate that the proposed method is qualified to realize accurate absolute quantitative measurements and fast diagnose the plasma characteristics,which verifies the practicability,advantages,and precision of this method.This self-absorption quantification method is of great significance for quantitative LIBS analysis,especially the CF-LIBS analysis.
      通信作者: 张雷, k1226@sxu.edu.cn;ywb65@sxu.edu.cn ; 尹王保, k1226@sxu.edu.cn;ywb65@sxu.edu.cn
    • 基金项目: 国家重点研发计划(批准号:2017YFA0304203)、长江学者和创新团队发展计划(批准号:IRT13076)、国家自然科学基金重点项目(批准号:11434007)、国家自然科学基金(批准号:61475093,61775125)、山西省科技重大专项(批准号:MD2016-01)和山西大学本科生科研训练计划项目资助课题.
      Corresponding author: Zhang Lei, k1226@sxu.edu.cn;ywb65@sxu.edu.cn ; Yin Wang-Bao, k1226@sxu.edu.cn;ywb65@sxu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2017YFA0304203), the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT13076), the National Natural Science Foundation of China (Grant Nos. 61475093, 61775125), the Science and Technology Major Projects of Shanxi Province, China (Grant No. MD2016-01), and the Program of Undergraduate Scientific Research Training of Shanxi University, China.
    [1]

    Aryal K, Khatri H, Collins R W, Marsillac S 2012 Int. J. Photo Energ. 2012 7863

    [2]

    Wang Z, Li L Z, West L, Li Z, Ni W D 2012 Spectrochim. Acta B 68 58

    [3]

    Wang Z, Yuan T B, Lui S L, Hou Z Y, Li X W, Li Z, Ni W D 2012 Front. Phys. 7 708

    [4]

    Yao S C, Lu J D, Chen K, Pan S H, Li J Y, Dong M R 2011 Appl. Surf. Sci. 257 3103

    [5]

    Hai R, Farid N, Zhao D Y, Zhang L, Liu J H, Ding H B, Wu J, Luo G N 2013 Spectrochim. Acta B 87 147

    [6]

    Du C, Gao X, Shao Y, Song X Y, Zhao Z M, Hao Z Q, Lin J Q 2013 Acta Phys. Sin. 62 045202 (in Chinese) [杜闯, 高勋, 邵妍, 宋晓伟, 赵振明, 郝作强, 林景全 2013 物理学报 62 045202]

    [7]

    Chen T B, Yao M Y, Liu M H, Lin Y Z, Li W B, Zheng M L, Zhou H M 2014 Acta Phys. Sin. 63 104213 (in Chinese) [陈添兵, 姚明印, 刘木华, 林永增, 黎文兵, 郑美兰, 周华茂 2014 物理学报 63 104213]

    [8]

    Sun D X, Su M G, Dong C Z, Wang X L, Zhang D C, Ma X W 2010 Acta Phys. Sin. 59 4571 (in Chinese) [孙对兄, 苏茂根, 董晨钟, 王向丽, 张大成, 马新文 2010 物理学报 59 4571]

    [9]

    Liu Y F, Ding Y J, Peng Z M, Huang Y, Du Y J 2014 Acta Phys. Sin. 63 205205 (in Chinese) [刘玉峰, 丁艳军, 彭志敏, 黄宇, 杜艳君 2014 物理学报 63 205205]

    [10]

    Yang W B, Zhou J N, Li B C, Xing T W 2017 Acta Phys. Sin. 66 095201 (in Chinese) [杨文斌, 周江宁, 李斌成, 邢廷文 2017 物理学报 66 095201]

    [11]

    Bulajic D, Corsi M, Cristoforetti G, Legnaioli S, Palleschi V, Salvetti A, Tognoni E 2002 Spectrochim. Acta B 57 339

    [12]

    Amamou H, Bois A, Ferhat B, Redon R, Rossetto B, Matheron P 2002 J. Quant. Spectrosc. Radiat. Transfer 75 747

    [13]

    St-Onge L, Kwong E, Sabsabi M, Vadas E B 2004 J. Pharm. Biomed. Anal. 36 277

    [14]

    El Sherbini A M, El Sherbini T M, Hegazy H, Cristoforetti G, Legnaioli S, Palleschi V, Pardini L, Salvetti A, Tognoni E 2005 Spectrochim. Acta B 60 1573

    [15]

    Sun L, Yu H 2009 Talanta. 79 388

    [16]

    Li J M, Guo L B, Li C M, Zhao N, Yang X Y, Hao Z Q, Li X Y, Zeng X Y, Lu Y F 2015 Opt. Lett. 40 5224

    [17]

    Lochte-Holtgreven W 1995 Plasma Diagnostics (New York: AIP Press American Institute of Physics)

    [18]

    Kepple P, Griem H R 1968 Phys. Rev. 173 317

    [19]

    Cristoforetti G, Lorenzetti G, Legnaioli S, Palleschi V 2010 Spectrochim. Acta Part B 65 787

    [20]

    Cristoforetti G, de Giacomo A, Dell'Aglio M, Legnaioli S, Tognoni E, Palleschi V, Omenetto N 2010 Spectrochim. Acta B 65 86

  • [1]

    Aryal K, Khatri H, Collins R W, Marsillac S 2012 Int. J. Photo Energ. 2012 7863

    [2]

    Wang Z, Li L Z, West L, Li Z, Ni W D 2012 Spectrochim. Acta B 68 58

    [3]

    Wang Z, Yuan T B, Lui S L, Hou Z Y, Li X W, Li Z, Ni W D 2012 Front. Phys. 7 708

    [4]

    Yao S C, Lu J D, Chen K, Pan S H, Li J Y, Dong M R 2011 Appl. Surf. Sci. 257 3103

    [5]

    Hai R, Farid N, Zhao D Y, Zhang L, Liu J H, Ding H B, Wu J, Luo G N 2013 Spectrochim. Acta B 87 147

    [6]

    Du C, Gao X, Shao Y, Song X Y, Zhao Z M, Hao Z Q, Lin J Q 2013 Acta Phys. Sin. 62 045202 (in Chinese) [杜闯, 高勋, 邵妍, 宋晓伟, 赵振明, 郝作强, 林景全 2013 物理学报 62 045202]

    [7]

    Chen T B, Yao M Y, Liu M H, Lin Y Z, Li W B, Zheng M L, Zhou H M 2014 Acta Phys. Sin. 63 104213 (in Chinese) [陈添兵, 姚明印, 刘木华, 林永增, 黎文兵, 郑美兰, 周华茂 2014 物理学报 63 104213]

    [8]

    Sun D X, Su M G, Dong C Z, Wang X L, Zhang D C, Ma X W 2010 Acta Phys. Sin. 59 4571 (in Chinese) [孙对兄, 苏茂根, 董晨钟, 王向丽, 张大成, 马新文 2010 物理学报 59 4571]

    [9]

    Liu Y F, Ding Y J, Peng Z M, Huang Y, Du Y J 2014 Acta Phys. Sin. 63 205205 (in Chinese) [刘玉峰, 丁艳军, 彭志敏, 黄宇, 杜艳君 2014 物理学报 63 205205]

    [10]

    Yang W B, Zhou J N, Li B C, Xing T W 2017 Acta Phys. Sin. 66 095201 (in Chinese) [杨文斌, 周江宁, 李斌成, 邢廷文 2017 物理学报 66 095201]

    [11]

    Bulajic D, Corsi M, Cristoforetti G, Legnaioli S, Palleschi V, Salvetti A, Tognoni E 2002 Spectrochim. Acta B 57 339

    [12]

    Amamou H, Bois A, Ferhat B, Redon R, Rossetto B, Matheron P 2002 J. Quant. Spectrosc. Radiat. Transfer 75 747

    [13]

    St-Onge L, Kwong E, Sabsabi M, Vadas E B 2004 J. Pharm. Biomed. Anal. 36 277

    [14]

    El Sherbini A M, El Sherbini T M, Hegazy H, Cristoforetti G, Legnaioli S, Palleschi V, Pardini L, Salvetti A, Tognoni E 2005 Spectrochim. Acta B 60 1573

    [15]

    Sun L, Yu H 2009 Talanta. 79 388

    [16]

    Li J M, Guo L B, Li C M, Zhao N, Yang X Y, Hao Z Q, Li X Y, Zeng X Y, Lu Y F 2015 Opt. Lett. 40 5224

    [17]

    Lochte-Holtgreven W 1995 Plasma Diagnostics (New York: AIP Press American Institute of Physics)

    [18]

    Kepple P, Griem H R 1968 Phys. Rev. 173 317

    [19]

    Cristoforetti G, Lorenzetti G, Legnaioli S, Palleschi V 2010 Spectrochim. Acta Part B 65 787

    [20]

    Cristoforetti G, de Giacomo A, Dell'Aglio M, Legnaioli S, Tognoni E, Palleschi V, Omenetto N 2010 Spectrochim. Acta B 65 86

  • [1] 侯佳佳, 张大成, 冯中琦, 朱江峰. 基于温度迭代校正自吸收效应的激光诱导击穿光谱定量分析方法. 物理学报, 2024, 73(5): 054205. doi: 10.7498/aps.73.20231541
    [2] 何霄, 肖小舟, 何滨, 薛平, 肖嘉莹. 基于光声泵浦成像的氧分压测量定量分析. 物理学报, 2023, 72(21): 218101. doi: 10.7498/aps.72.20231041
    [3] 杨大鹏, 李苏宇, 姜远飞, 陈安民, 金明星. 飞秒激光成丝诱导Cu等离子体的温度和电子密度. 物理学报, 2017, 66(11): 115201. doi: 10.7498/aps.66.115201
    [4] 杨文斌, 周江宁, 李斌成, 邢廷文. 激光诱导氮气等离子体时间分辨光谱研究及温度和电子密度测量. 物理学报, 2017, 66(9): 095201. doi: 10.7498/aps.66.095201
    [5] 刘玉峰, 张连水, 和万霖, 黄宇, 杜艳君, 蓝丽娟, 丁艳军, 彭志敏. 激光诱导击穿火焰等离子体光谱研究. 物理学报, 2015, 64(4): 045202. doi: 10.7498/aps.64.045202
    [6] 成玉国, 程谋森, 王墨戈, 李小康. 磁场对螺旋波等离子体波和能量吸收影响的数值研究. 物理学报, 2014, 63(3): 035203. doi: 10.7498/aps.63.035203
    [7] 陈添兵, 姚明印, 刘木华, 林永增, 黎文兵, 郑美兰, 周华茂. 基于多元定标法的脐橙Pb元素激光诱导击穿光谱定量分析. 物理学报, 2014, 63(10): 104213. doi: 10.7498/aps.63.104213
    [8] 刘玉峰, 丁艳军, 彭志敏, 黄宇, 杜艳君. 激光诱导击穿空气等离子体时间分辨特性的光谱研究. 物理学报, 2014, 63(20): 205205. doi: 10.7498/aps.63.205205
    [9] 张颖, 张大成, 马新文, 潘冬, 赵冬梅. 基于激光诱导击穿光谱技术定量分析食用明胶中的铬元素. 物理学报, 2014, 63(14): 145202. doi: 10.7498/aps.63.145202
    [10] 刘月华, 陈明, 刘向东, 崔清强, 赵明文. 透镜到靶材的距离对脉冲激光诱导等离子体的影响机理研究. 物理学报, 2013, 62(2): 025203. doi: 10.7498/aps.62.025203
    [11] 王春龙, 刘建国, 赵南京, 马明俊, 王寅, 胡丽, 张大海, 余洋, 孟德硕, 章炜, 刘晶, 张玉钧, 刘文清. 水体重金属激光诱导击穿光谱定量分析方法对比研究. 物理学报, 2013, 62(12): 125201. doi: 10.7498/aps.62.125201
    [12] 张旭, 姚明印, 刘木华. 激光诱导击穿光谱结合偏最小二乘法定量分析脐橙中Cd含量. 物理学报, 2013, 62(4): 044211. doi: 10.7498/aps.62.044211
    [13] 李世雄, 白忠臣, 黄政, 张欣, 秦水介, 毛文雪. 激光诱导等离子体加工石英微通道机理研究. 物理学报, 2012, 61(11): 115201. doi: 10.7498/aps.61.115201
    [14] 高勋, 宋晓伟, 郭凯敏, 陶海岩, 林景全. 飞秒激光烧蚀硅表面产生等离子体的发射光谱研究. 物理学报, 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [15] 鲁翠萍, 刘文清, 赵南京, 刘立拓, 陈东, 张玉钧, 刘建国. 土壤重金属铬元素的激光诱导击穿光谱定量分析研究. 物理学报, 2011, 60(4): 045206. doi: 10.7498/aps.60.045206
    [16] 夏志林, 郭培涛, 薛亦渝, 黄才华, 李展望. 短脉冲激光诱导薄膜损伤的等离子体爆炸过程分析. 物理学报, 2010, 59(5): 3523-3530. doi: 10.7498/aps.59.3523
    [17] 孙对兄, 苏茂根, 董晨钟, 王向丽, 张大成, 马新文. 基于激光诱导击穿光谱技术的铝合金成分定量分析. 物理学报, 2010, 59(7): 4571-4576. doi: 10.7498/aps.59.4571
    [18] 张大成, 马新文, 朱小龙, 李 斌, 祖凯玲. 激光诱导击穿光谱应用于三种水果样品微量元素的分析. 物理学报, 2008, 57(10): 6348-6353. doi: 10.7498/aps.57.6348
    [19] 崔执凤, 张先燚, 姚关心, 汪小丽, 许新胜, 郑贤锋, 凤尔银, 季学韩. 铅黄铜合金中痕量元素定量分析的激光诱导击穿谱研究. 物理学报, 2006, 55(9): 4506-4513. doi: 10.7498/aps.55.4506
    [20] 刘少斌, 朱传喜, 袁乃昌. 等离子体光子晶体的FDTD分析. 物理学报, 2005, 54(6): 2804-2808. doi: 10.7498/aps.54.2804
计量
  • 文章访问数:  5370
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-02
  • 修回日期:  2018-05-24
  • 刊出日期:  2019-08-20

/

返回文章
返回