搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于微泡共振的快速微流体声学混合方法研究

赵章风 张文俊 牛丽丽 孟龙 郑海荣

引用本文:
Citation:

基于微泡共振的快速微流体声学混合方法研究

赵章风, 张文俊, 牛丽丽, 孟龙, 郑海荣

Microbubble oscillation induced acoustic micromixing in microfluidic device

Zhao Zhang-Feng, Zhang Wen-Jun, Niu Li-Li, Meng Long, Zheng Hai-Rong
PDF
导出引用
  • 微流体在生物医学、化学工程等领域应用广泛,并具有重大意义.在预处理中,液体混合也是关键且最为必要的前序.为了提高微流控腔道内液体混合的效率,本文提出基于单微泡振动的声学混合器,通过微泡共振,产生声微流,声微流形成的剪切力将在流体中产生微扰动,实现液体的混合.设计了底面直径为40 m的微孔结构,由于液体表面张力作用形成微泡,在共振频率为165 kHz的压电换能器激励下,气泡发生共振产生声微流.通过对压电换能器输入不同能量,获取混合液体的最优参数,可在37.5 ms内实现混合效果,混合均匀度达到92.7%.本文设计的单微泡振动混合器结构简单、混合效率高、混合时间短、输入能量低,可为生物化学等方面的研究提供强有力的技术支撑.
    Microfluidic is of great significance for biomedical research and chemical engineering. The mixing of liquids is an essential and necessary procedure for the sample preparation. Due to the low Reynolds number, laminar flow is dominant in a microfluidic channel and it is difficult to mix the fluids in the microchannel quickly and effectively. To improve the mixing efficiency of the liquids in microfluidic channels, we develop an acoustic mixer based on single microbubble oscillation. By designing the cylinder structure on the bottom surface, when the fluid flows through cylinder structure with a diameter of 40 m, the microbubble can be generated by the surface tension of the liquid. The device is fabricated by using standard soft lithography and the replica moulding technique, ensuring the stability and repeatability of the mixing. A piezoelectric transducer (PZT) with a resonant frequency of 165 kHz is attached to the polydimethylsiloxane microfluidic device on the glass substrate by ultrasound coupling gel. When the microbubble is excited by the PZT at a resonant frequency of 165 kHz, microbubble oscillates immediately. To verify whether ultrasound can induce microbubble cavitation, a passive cavitation detection system is established. The results show that the higher harmonics can be detected, indicating that the stable cavitation occurs. The microstreaming induced by the oscillating microbubble disturbs the fluid dramatically, achieving the mixture of liquids. Particle image velocimetry method is utilized to characterize the microstreaming, and a pair of counter-rotating vortices in the microchannel is detected. Furthermore, to test the performance of the device, the deionized water and rhodamine B are injected into the Y-shape microchannel. Relative mixing index is used to quantitatively analyze the mixing performance by measuring the grayscale values of the optical images. The results indicate that with the increase of the input power, mixing time can be shortened correspondingly. When the input power is 14.76 W, the mixing process is ultrafast, within 37.5 ms the high mixing uniformity can be achieved to be 92.7%. With the advantages of simple design, high efficient and ultrafast mixing, and low power consumption, this oscillating microbubble-based acoustic micromixer may provide a powerful tool for various biochemical studies and applications.
      通信作者: 孟龙, long.meng@siat.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11674347)、中国科学院青年创新促进会(批准号:2018393)、广东省自然科学基金(批准号:2017B030306011)和深圳市基础研究学科布局(批准号:JCYJ20160429184552717)资助的课题.
      Corresponding author: Meng Long, long.meng@siat.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11674347), the Youth Innovation Promotion Association, Chinese Academy of Sciences (Grant No. 2018393), the Natural Science Foundation of Guangdong Province, China (Grant No. 2017B030306011), and the Shenzhen Basic Research Program, China (Grant No. JCYJ20160429184552717).
    [1]

    Jia X, Wang W, Han Q, Wang Z, Jia Y, Hu Z 2016 ACS Med. Chem. Lett. 7 429

    [2]

    Kastania A S, Tsougeni K, Papadakis G, Gizeli E, Kokkoris G, Tserepi A, Gogolides E 2016 Anal. Chim. Acta 942 58

    [3]

    Othman R, Vladisavljević G T, Bandulasena H C H, Nagy Z K 2015 Chem. Eng. J. 280 316

    [4]

    Lee C Y, Fu L M 2017 Sensor Actuat. B:Chem. 259 677

    [5]

    Sritharan K, Strobl C J, Schneider M F, Wixforth 2006 Appl. Phys. Lett. 88 054102

    [6]

    Ai X P, Ni B Y 2017 Acta Phys. Sin. 66 234702 (in Chinese) [艾旭鹏, 倪宝玉 2017 物理学报 66 234702]

    [7]

    Chen X, Zhang L 2017 Microchim. Acta 184 3639

    [8]

    De B D, Recht M I, Bhagat A A, Torres F E, Bell A G, Bruce R H 2011 Lab. Chip 11 3313

    [9]

    Lang Q, Ren Y, Hobson D, Tao Y, Hou L K, Jia Y K, Hu Q M, Liu J W, Zhao X, Jiang H Y 2016 Biomicrofluidics 10 064102

    [10]

    De L F, Soref R A, Vmm P 2017 Sci. Rep. 7 3401

    [11]

    Abbas Y, Miwa J, Zengerle R, Stetten F V 2013 Micromachines 4 80

    [12]

    Xia Q, Zhong S 2012 J. Visual-Japan 15 57

    [13]

    Luong T D, Phan V N, Nguyen N T 2011 Microfluid. Nanofluid. 10 619

    [14]

    Shilton R, Tan M K, Yeo L Y, Friend J R 2008 J. Appl. Phys. 104 014910

    [15]

    Chen X, Li T 2017 Chem. Eng. J. 313 1406

    [16]

    Huang P H, Xie Y, Ahmed D, Rufo J, Nama N, Chen Y C, Chan C Y, Huang T J 2013 Lab Chip 13 3847

    [17]

    Razmkhah M, Moosavi F, Mosavian M T H, Ahmadpour A 2018 Desalination 432 55

    [18]

    Prosperetti A 1977 J. Acoust. Soc. Am. 61 17

    [19]

    Coussios C C, Farny C H, Haar G T, Roy R A 2007 Int. J. Hyperther. 23 105

    [20]

    Birkin P R, Offin D G, Vian C J, Leighton T G, Maksimov A O 2011 J. Acoust. Soc. Am. 130 3297

    [21]

    Crum L A 1984 Ultrasonics 22 215

    [22]

    Lu Y G, Wu X H 2011 Acta Phys. Sin. 60 046202 (in Chinese) [卢义刚, 吴雄慧 2011 物理学报 60 046202]

    [23]

    Hu Y, Ge Y, Zhang D, Zheng H R, Gong X F 2009 Acta Phys. Sin. 58 4746 (in Chinese) [胡艺, 葛云, 章东, 郑海荣, 龚秀芬 2009 物理学报 58 4746]

    [24]

    Ahmed D, Ozcelik A, Bojanala N, Nama N, Upadhyay A, Chen Y, Hanna-Rose W, Huang T J 2016 Nat. Commun. 7 11085

    [25]

    Miller D L 1988 J. Acoust. Soc. Am. 84 1378

    [26]

    Marmottant P, Hilgenfeldt S 2003 Nature 423 153

    [27]

    Patel M V, Nanayakkara I A, Simon M G, Lee A P 2014 Lab Chip 14 3860

    [28]

    Meng L, Cai F, Jiang P, Deng Z T, Li F, Niu L L, Chen Y, Wu J R, Zheng H R 2014 Appl. Phys. Lett. 104 073701

    [29]

    Yu J, Guo X S, Tu J, Zhang D 2015 Acta Phys. Sin. 64 094306 (in Chinese) [于洁, 郭霞生, 屠娟, 章东 2015 物理学报 64 094306]

    [30]

    Hashmi A, Xu J 2014 J. Lab. Auto. 19 488

    [31]

    Bertin N, Spelman T A, Combriat T, Hue H, Stphan O, Lauga E, Marmottant P 2017 Lab Chip 17 1515

    [32]

    Arden J, Deltau G, Huth V, Kringel U, Peros D, Dreshage K H 1991 J. Lumen. 48 352

  • [1]

    Jia X, Wang W, Han Q, Wang Z, Jia Y, Hu Z 2016 ACS Med. Chem. Lett. 7 429

    [2]

    Kastania A S, Tsougeni K, Papadakis G, Gizeli E, Kokkoris G, Tserepi A, Gogolides E 2016 Anal. Chim. Acta 942 58

    [3]

    Othman R, Vladisavljević G T, Bandulasena H C H, Nagy Z K 2015 Chem. Eng. J. 280 316

    [4]

    Lee C Y, Fu L M 2017 Sensor Actuat. B:Chem. 259 677

    [5]

    Sritharan K, Strobl C J, Schneider M F, Wixforth 2006 Appl. Phys. Lett. 88 054102

    [6]

    Ai X P, Ni B Y 2017 Acta Phys. Sin. 66 234702 (in Chinese) [艾旭鹏, 倪宝玉 2017 物理学报 66 234702]

    [7]

    Chen X, Zhang L 2017 Microchim. Acta 184 3639

    [8]

    De B D, Recht M I, Bhagat A A, Torres F E, Bell A G, Bruce R H 2011 Lab. Chip 11 3313

    [9]

    Lang Q, Ren Y, Hobson D, Tao Y, Hou L K, Jia Y K, Hu Q M, Liu J W, Zhao X, Jiang H Y 2016 Biomicrofluidics 10 064102

    [10]

    De L F, Soref R A, Vmm P 2017 Sci. Rep. 7 3401

    [11]

    Abbas Y, Miwa J, Zengerle R, Stetten F V 2013 Micromachines 4 80

    [12]

    Xia Q, Zhong S 2012 J. Visual-Japan 15 57

    [13]

    Luong T D, Phan V N, Nguyen N T 2011 Microfluid. Nanofluid. 10 619

    [14]

    Shilton R, Tan M K, Yeo L Y, Friend J R 2008 J. Appl. Phys. 104 014910

    [15]

    Chen X, Li T 2017 Chem. Eng. J. 313 1406

    [16]

    Huang P H, Xie Y, Ahmed D, Rufo J, Nama N, Chen Y C, Chan C Y, Huang T J 2013 Lab Chip 13 3847

    [17]

    Razmkhah M, Moosavi F, Mosavian M T H, Ahmadpour A 2018 Desalination 432 55

    [18]

    Prosperetti A 1977 J. Acoust. Soc. Am. 61 17

    [19]

    Coussios C C, Farny C H, Haar G T, Roy R A 2007 Int. J. Hyperther. 23 105

    [20]

    Birkin P R, Offin D G, Vian C J, Leighton T G, Maksimov A O 2011 J. Acoust. Soc. Am. 130 3297

    [21]

    Crum L A 1984 Ultrasonics 22 215

    [22]

    Lu Y G, Wu X H 2011 Acta Phys. Sin. 60 046202 (in Chinese) [卢义刚, 吴雄慧 2011 物理学报 60 046202]

    [23]

    Hu Y, Ge Y, Zhang D, Zheng H R, Gong X F 2009 Acta Phys. Sin. 58 4746 (in Chinese) [胡艺, 葛云, 章东, 郑海荣, 龚秀芬 2009 物理学报 58 4746]

    [24]

    Ahmed D, Ozcelik A, Bojanala N, Nama N, Upadhyay A, Chen Y, Hanna-Rose W, Huang T J 2016 Nat. Commun. 7 11085

    [25]

    Miller D L 1988 J. Acoust. Soc. Am. 84 1378

    [26]

    Marmottant P, Hilgenfeldt S 2003 Nature 423 153

    [27]

    Patel M V, Nanayakkara I A, Simon M G, Lee A P 2014 Lab Chip 14 3860

    [28]

    Meng L, Cai F, Jiang P, Deng Z T, Li F, Niu L L, Chen Y, Wu J R, Zheng H R 2014 Appl. Phys. Lett. 104 073701

    [29]

    Yu J, Guo X S, Tu J, Zhang D 2015 Acta Phys. Sin. 64 094306 (in Chinese) [于洁, 郭霞生, 屠娟, 章东 2015 物理学报 64 094306]

    [30]

    Hashmi A, Xu J 2014 J. Lab. Auto. 19 488

    [31]

    Bertin N, Spelman T A, Combriat T, Hue H, Stphan O, Lauga E, Marmottant P 2017 Lab Chip 17 1515

    [32]

    Arden J, Deltau G, Huth V, Kringel U, Peros D, Dreshage K H 1991 J. Lumen. 48 352

  • [1] 李伟健, 周晓艳, 陆杭军. 无阀纳米泵中水流的反常堵塞. 物理学报, 2024, 73(9): 094702. doi: 10.7498/aps.73.20240115
    [2] 张玫玫, 吴意赟, 于洁, 屠娟, 章东. 脉冲占空比对磁性微泡介导的聚焦超声温升效应的影响. 物理学报, 2023, 72(8): 084301. doi: 10.7498/aps.72.20230068
    [3] 王雨, 张慧敏, 覃欢. 生物医学微波热声成像. 物理学报, 2023, 72(20): 204301. doi: 10.7498/aps.72.20230732
    [4] 张雅婧, 王铭浩, 雷照康, 申文洁, 马嫣嫱, 莫润阳. 多层膜结构载磁微泡声散射特性. 物理学报, 2022, 71(18): 184302. doi: 10.7498/aps.71.20220847
    [5] 吴学由, 梁金福. 超声场中单气泡的平移和非球形振动. 物理学报, 2021, 70(18): 184301. doi: 10.7498/aps.70.20210513
    [6] 赵丽霞, 王成会, 莫润阳. 多层膜磁性微泡的非线性声振动特性. 物理学报, 2021, 70(1): 014301. doi: 10.7498/aps.70.20200973
    [7] 史慧敏, 胡静, 王成会, 凤飞龙, 莫润阳. 有限长管内包膜微泡在磁-声复合场作用下的振动行为. 物理学报, 2021, 70(21): 214303. doi: 10.7498/aps.70.20210559
    [8] 冯康艺, 王成会. 超声场中空化泡对弹性粒子微流的影响. 物理学报, 2019, 68(24): 244301. doi: 10.7498/aps.68.20191253
    [9] 刘珍黎, 宋亮华, 白亮, 许凯亮, 他得安. 长骨中振动声激发超声导波的方法. 物理学报, 2017, 66(15): 154303. doi: 10.7498/aps.66.154303
    [10] 刘国栋, 许新科, 刘炳国, 陈凤东, 胡涛, 路程, 甘雨. 基于振动抑制高精度宽带激光扫频干涉测量方法. 物理学报, 2016, 65(20): 209501. doi: 10.7498/aps.65.209501
    [11] 于洁, 郭霞生, 屠娟, 章东. 超声造影剂微泡非线性动力学响应的机理及相关应用. 物理学报, 2015, 64(9): 094306. doi: 10.7498/aps.64.094306
    [12] 殷杰, 陶超, 刘晓峻. 多参量光声成像及其在生物医学领域的应用. 物理学报, 2015, 64(9): 098102. doi: 10.7498/aps.64.098102
    [13] 胡格丽, 倪志鹏, 王秋良. 结合振动控制的柱面纵向梯度线圈目标场设计方法. 物理学报, 2014, 63(1): 018301. doi: 10.7498/aps.63.018301
    [14] 南一冰, 唐义, 张丽君, 常月娥, 陈廷爱. 一种卫星平台振动光谱成像数据分块校正方法. 物理学报, 2014, 63(1): 010701. doi: 10.7498/aps.63.010701
    [15] 张富翁, 王立, 刘传平, 吴平. 竖直振动管中颗粒的上升运动. 物理学报, 2014, 63(1): 014501. doi: 10.7498/aps.63.014501
    [16] 唐秋艳, 唐义, 曹玮亮, 王静, 南一冰, 倪国强. 卫星平台复杂振动引起的光谱成像退化仿真研究. 物理学报, 2012, 61(7): 070202. doi: 10.7498/aps.61.070202
    [17] 冯海冉, 李鹏, 郑雨军, 丁世良. 用李代数方法解析研究线性三原子分子振动的动力学纠缠. 物理学报, 2010, 59(8): 5246-5250. doi: 10.7498/aps.59.5246
    [18] 赵永志, 江茂强, 郑津洋. 巴西果效应分离过程的计算颗粒力学模拟研究. 物理学报, 2009, 58(3): 1812-1818. doi: 10.7498/aps.58.1812
    [19] 曲照军, 柳盛典, 杨传路, 马晓光. 边界振动的微腔中的二能级原子. 物理学报, 2006, 55(7): 3393-3395. doi: 10.7498/aps.55.3393
    [20] 姜泽辉, 陆坤权, 厚美瑛, 陈 唯, 陈相君. 振动颗粒混合物中的三明治式分离. 物理学报, 2003, 52(9): 2244-2248. doi: 10.7498/aps.52.2244
计量
  • 文章访问数:  5665
  • PDF下载量:  174
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-16
  • 修回日期:  2018-07-12
  • 刊出日期:  2018-10-05

/

返回文章
返回