搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于十字连通形环形谐振腔金属-介质-金属波导的折射率传感器和滤波器

祁云平 张雪伟 周培阳 胡兵兵 王向贤

引用本文:
Citation:

基于十字连通形环形谐振腔金属-介质-金属波导的折射率传感器和滤波器

祁云平, 张雪伟, 周培阳, 胡兵兵, 王向贤

Refractive index sensor and filter of metal-insulator-metal waveguide based on ring resonator embedded by cross structure

Qi Yun-Ping, Zhang Xue-Wei, Zhou Pei-Yang, Hu Bing-Bing, Wang Xiang-Xian
PDF
导出引用
  • 提出了由十字连通形环形谐振腔耦合两个金属-介质-金属(metal-insulator-metal,MIM)波导的结构,并用有限元法数值研究了表面等离极化激元在结构中的传输特性.通过对透射谱的研究,系统地分析了MIM结构的传感特性.结果表明,在透射光谱中有三个共振峰,即存在三种共振模式,其中透射峰与材料的折射率呈线性关系.通过对结构参数的优化,得到了折射率灵敏度(S)高达1500 nm/RIU的理论值,相应的传感分辨率为1.3310-4 RIU.更重要的是,灵敏度不受结构参数变化的影响,这意味着传感器的灵敏度不受制造偏差的影响.此外,谐振波长与环形腔中心半径成线性关系,该器件在较大波长范围内实现可调谐带通滤波.透射强度随着波导与环形腔间距的增大而减小,透射带宽同时减小,因此,可以通过控制环形腔与波导的耦合距离来调谐透射强度及透射带宽.研究结果对高灵敏度纳米级折射率传感器和带通滤波器的设计以及在生物传感器方面的应用都具有一定的指导意义.
    Continuous improvement in nanofabrication and nano-characterization capabilities have changed projections about the role that metals could play in developing the new optical devices. Surface plasmon polaritons are evanescent waves that propagate along a metal-dielectric interface. They can be laterally confined below the diffraction limit by using subwavelength metal structures, rendering them attractive to the development of miniaturized optical devices. A surface plasmon polariton refractive index sensor and filter which consist of two metal-insulator-metal (MIM) waveguides coupled to each other by a ring resonator embedded by cross structure are proposed. And the transmission characteristics of surface plasmon polaritons are studied in our proposed structure. The transmission properties of such a structure are simulated by the finite element method, and the eigenvalue wavelengths of the ring resonator are calculated theoretically. The sensing characteristics of such a structure are systematically analyzed by investigating the transmission spectrum. The results show that there are three resonance peaks in the transmission spectrum, that is, three resonance modes corresponding to the eigenvalue solutions of the first, second and third-order Bessel eigen-function equations, and each of which has a linear relationship with the refractive index of the material under sensing. Through the optimization of structural parameters, we achieve a theoretical value of the refractive index sensitivity (S) as high as 1500 nm/RIU, and the corresponding sensing resolution is 1.3310-4 RIU. More importantly, it is sensitive to none of the parameters of our proposed structure, which means that the sensitivity of the sensor is immune to the fabrication deviation. In addition, by the resonant theory of ring resonator, we find a linear relationship between the resonance wavelength and the radius of ring resonator. So the resonance wavelength can be easily manipulated by adjusting the radius and refractive index. In addition, the positions of transmission peaks can be easily modulated by changing the radius of the ring, which can be used to design band-pass filter for a large wavelength range. Moreover, the transmission intensity and the transmission bandwidth decrease as spacing distance between the MIM waveguide and ring cavity increases. These results would be helpful in designing the refractive index sensor of high-sensitivity and band-pass filters, and have guiding significance for biological sensor applications.
      通信作者: 祁云平, yunpq@126.com
    • 基金项目: 国家自然科学基金(批准号:61367005)、甘肃省自然科学基金-创新基地和人才计划(批准号:17JR5RA078)、西北师范大学青年教师科研能力提升计划(批准号:NWNU-LKQN-17-6)和西北师范大学学生创新能力提升计划(批准号:CX2018Y167)资助的课题.
      Corresponding author: Qi Yun-Ping, yunpq@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61367005), the Natural Science Foundation of Gansu Province, China (Grant No. 17JR5RA078), Northwest Normal University Young Teachers' Scientific Research Capability Upgrading Program (Grant No. NWNU-LKQN-17-6), and the Northwest Normal University Graduate Student Innovation Ability Enhancement Program Foundation, China (Grant No. CX2018Y167).
    [1]

    Hunsperger R G 2009 Integrated Optics:Theory and Application (Berlin:Springer) p85

    [2]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [3]

    Pang Z, Tong H, Wu X, Zhu J, Wang X, Yang H, Qi Y 2018 Opt. Quant. Electron. 50 335

    [4]

    Wang L, Cai W, Tan X H, Xiang Y X, Zhang X Z, Xu J J 2011 Acta Phys. Sin. 60 067305 (in Chinese) [王垒, 蔡卫, 谭信辉, 向吟啸, 张心正, 许京军 2011 物理学报 60 067305]

    [5]

    Hua L, Wang G X, Liu X M 2013 Chin. Sci. Bull. 58 3607

    [6]

    Amini A, Aghili S, Golmohammadi S, Gasemi P 2017 Opt. Commun. 403 226

    [7]

    Wang G, Lu H, Liu X, Mao D, Duan L 2011 Opt. Express 19 3513

    [8]

    Gao H, Shi H, Wang C, Du C, Luo X, Deng Q, L Y, Lin X, Yao H 2005 Opt. Express 13 10795

    [9]

    Veronis G, Fan S 2005 Appl. Phys. Lett. 87 131102

    [10]

    Han Z, Liu L, Forsberg E 2006 Opt. Commun. 259 690

    [11]

    Zhang Z D, Zhao Y N, Lu D, Xiong Z H, Zhang Z Y 2012 Acta Phys. Sin. 61 187301 (in Chinese) [张志东, 赵亚男, 卢东, 熊祖洪, 张中月 2012 物理学报 61 187301]

    [12]

    Tang Y, Zhang Z D, Wang R B, Hai Z Y, Xue C Y, Zhang W D, Yan S B 2017 Sensors 17 784

    [13]

    Liu Z Q, Liu G Q, Liu X S, Shao H B, Chen J, Huang S, Liu M L, Fu G L 2015 Plasmonics 10 821

    [14]

    Wei W, Zhang X, Ren X 2015 Nanoscale Res. Lett. 10 211

    [15]

    Ren M X, Pan C P, Li Q Q, Cai W, Zhang X Z, Wu Q, Fan S S, Xu J J 2013 Opt. Lett. 38 3133

    [16]

    Gallinet B, Martin O J 2013 ACS Nano 7 6978

    [17]

    Shen Y, Zhou J H, Liu T R, Tao Y T, Jiang R B, Liu M X, Xiao G H, Zhu J H, Zhou Z K, Wang X H, Jin C J, Wang J F 2013 Nature Commun. 4 2381

    [18]

    Lodewijks K, Ryken J, Roy W V, Borghs G, Lagae L, Dorpe P V 2013 Plasmonics 8 1379

    [19]

    Qiu G, Ng S P, Wu C M 2016 Sens. Actuators B:Chem. 234 247

    [20]

    Zhang X N, Liu G Q, Liu Z Q, Hu Y, Cai Z J, Liu X S, Fu G L, Liu M L 2014 Opt. Eng. 53 107108

    [21]

    Huang D W, Ma Y F, Sung M J, Huang C P 2010 Opt. Eng. 49 054403

    [22]

    Zhang Y N, Xie W G, Wang J, Wang P 2018 Opt. Mater. 75 666

    [23]

    Wu D K, Kuhlmey B T, Eggleton B J 2009 Opt. Lett. 34 322

    [24]

    Lin X S, Huang X G 2008 Opt. Lett. 33 2874

    [25]

    Liu H, Gao Y, Zhu B, Ren G, Jian S 2015 Opt. Commun. 334 164

    [26]

    Wu T S, Liu Y M, Yu Z Y, Peng Y W, Shu C G, Ye H 2014 Opt. Express 22 7669

    [27]

    Wang T B, Wen X W, Yin C P, Wang H Z 2009 Opt. Express 17 24096

    [28]

    Liu D D, Wang J C, Zhang F, Pan Y W, Lu J, Ni X W 2017 Sensors 17 585

    [29]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370

    [30]

    Palik E D 1985 Handbook of Optical Constants of Solids (New York:Academic Press) pp350-356

  • [1]

    Hunsperger R G 2009 Integrated Optics:Theory and Application (Berlin:Springer) p85

    [2]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [3]

    Pang Z, Tong H, Wu X, Zhu J, Wang X, Yang H, Qi Y 2018 Opt. Quant. Electron. 50 335

    [4]

    Wang L, Cai W, Tan X H, Xiang Y X, Zhang X Z, Xu J J 2011 Acta Phys. Sin. 60 067305 (in Chinese) [王垒, 蔡卫, 谭信辉, 向吟啸, 张心正, 许京军 2011 物理学报 60 067305]

    [5]

    Hua L, Wang G X, Liu X M 2013 Chin. Sci. Bull. 58 3607

    [6]

    Amini A, Aghili S, Golmohammadi S, Gasemi P 2017 Opt. Commun. 403 226

    [7]

    Wang G, Lu H, Liu X, Mao D, Duan L 2011 Opt. Express 19 3513

    [8]

    Gao H, Shi H, Wang C, Du C, Luo X, Deng Q, L Y, Lin X, Yao H 2005 Opt. Express 13 10795

    [9]

    Veronis G, Fan S 2005 Appl. Phys. Lett. 87 131102

    [10]

    Han Z, Liu L, Forsberg E 2006 Opt. Commun. 259 690

    [11]

    Zhang Z D, Zhao Y N, Lu D, Xiong Z H, Zhang Z Y 2012 Acta Phys. Sin. 61 187301 (in Chinese) [张志东, 赵亚男, 卢东, 熊祖洪, 张中月 2012 物理学报 61 187301]

    [12]

    Tang Y, Zhang Z D, Wang R B, Hai Z Y, Xue C Y, Zhang W D, Yan S B 2017 Sensors 17 784

    [13]

    Liu Z Q, Liu G Q, Liu X S, Shao H B, Chen J, Huang S, Liu M L, Fu G L 2015 Plasmonics 10 821

    [14]

    Wei W, Zhang X, Ren X 2015 Nanoscale Res. Lett. 10 211

    [15]

    Ren M X, Pan C P, Li Q Q, Cai W, Zhang X Z, Wu Q, Fan S S, Xu J J 2013 Opt. Lett. 38 3133

    [16]

    Gallinet B, Martin O J 2013 ACS Nano 7 6978

    [17]

    Shen Y, Zhou J H, Liu T R, Tao Y T, Jiang R B, Liu M X, Xiao G H, Zhu J H, Zhou Z K, Wang X H, Jin C J, Wang J F 2013 Nature Commun. 4 2381

    [18]

    Lodewijks K, Ryken J, Roy W V, Borghs G, Lagae L, Dorpe P V 2013 Plasmonics 8 1379

    [19]

    Qiu G, Ng S P, Wu C M 2016 Sens. Actuators B:Chem. 234 247

    [20]

    Zhang X N, Liu G Q, Liu Z Q, Hu Y, Cai Z J, Liu X S, Fu G L, Liu M L 2014 Opt. Eng. 53 107108

    [21]

    Huang D W, Ma Y F, Sung M J, Huang C P 2010 Opt. Eng. 49 054403

    [22]

    Zhang Y N, Xie W G, Wang J, Wang P 2018 Opt. Mater. 75 666

    [23]

    Wu D K, Kuhlmey B T, Eggleton B J 2009 Opt. Lett. 34 322

    [24]

    Lin X S, Huang X G 2008 Opt. Lett. 33 2874

    [25]

    Liu H, Gao Y, Zhu B, Ren G, Jian S 2015 Opt. Commun. 334 164

    [26]

    Wu T S, Liu Y M, Yu Z Y, Peng Y W, Shu C G, Ye H 2014 Opt. Express 22 7669

    [27]

    Wang T B, Wen X W, Yin C P, Wang H Z 2009 Opt. Express 17 24096

    [28]

    Liu D D, Wang J C, Zhang F, Pan Y W, Lu J, Ni X W 2017 Sensors 17 585

    [29]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370

    [30]

    Palik E D 1985 Handbook of Optical Constants of Solids (New York:Academic Press) pp350-356

  • [1] 陈召, 马昕新, 李童, 王艺霖. 耦合谐振系统中基于Fano共振的光学压力传感器. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20232025
    [2] 农洁, 张伊祎, 韦雪玲, 姜鑫鹏, 李宁, 王冬迎, 肖思洋, 陈泓廷, 张振荣, 杨俊波. 电介质/金属/电介质膜系实现可见光波段高透兼容激光隐身研究. 物理学报, 2023, 72(17): 177802. doi: 10.7498/aps.72.20230855
    [3] 祁云平, 贾迎君, 张婷, 丁京徽, 尉净雯, 王向贤. 基于Fano共振的金属-绝缘体-金属-石墨烯纳米管混合结构动态可调折射率传感器. 物理学报, 2022, 71(17): 178101. doi: 10.7498/aps.71.20220652
    [4] 谷馨, 张惠芳, 李明雨, 陈俊雅, 何英. 三椭圆谐振腔耦合波导中可调谐双重等离子体诱导透明效应的理论分析. 物理学报, 2022, 71(24): 247301. doi: 10.7498/aps.71.20221365
    [5] 王雅君, 王俊萍, 张文慧, 李瑞鑫, 田龙, 郑耀辉. 光学谐振腔的传输特性. 物理学报, 2021, 70(20): 204202. doi: 10.7498/aps.70.20210234
    [6] 于长秋, 马世昌, 陈志远, 项晨晨, 李海, 周铁军. 结构改进的厘米尺寸谐振腔的磁场传感特性. 物理学报, 2021, 70(16): 160701. doi: 10.7498/aps.70.20210247
    [7] 管福鑫, 董少华, 何琼, 肖诗逸, 孙树林, 周磊. 表面等离极化激元的散射及波前调控. 物理学报, 2020, 69(15): 157804. doi: 10.7498/aps.69.20200614
    [8] 祁云平, 张婷, 郭嘉, 张宝和, 王向贤. 基于乙醇密封共振腔金属-介质-金属波导的高性能温度和折射率两用传感器. 物理学报, 2020, 69(16): 167301. doi: 10.7498/aps.69.20200405
    [9] 严德贤, 李九生, 王怡. 基于向日葵型圆形光子晶体的高灵敏度太赫兹折射率传感器. 物理学报, 2019, 68(20): 207801. doi: 10.7498/aps.68.20191024
    [10] 祁云平, 周培阳, 张雪伟, 严春满, 王向贤. 基于塔姆激元-表面等离极化激元混合模式的单缝加凹槽纳米结构的增强透射. 物理学报, 2018, 67(10): 107104. doi: 10.7498/aps.67.20180117
    [11] 王维, 高社生, 孟阳. 型谐振腔结构的光学透射特性. 物理学报, 2017, 66(1): 017301. doi: 10.7498/aps.66.017301
    [12] 张永元, 罗李娜, 张中月. 十字结构银纳米线的表面等离极化激元分束特性. 物理学报, 2015, 64(9): 097303. doi: 10.7498/aps.64.097303
    [13] 郭泽彬, 唐军, 刘俊, 王明焕, 商成龙, 雷龙海, 薛晨阳, 张文栋, 闫树斌. 锥形光纤激发盘腔光学模式互易性研究. 物理学报, 2014, 63(22): 227802. doi: 10.7498/aps.63.227802
    [14] 陈颖, 范卉青, 卢波. 带多孔硅表面缺陷腔的半无限光子晶体Tamm态及其折射率传感机理. 物理学报, 2014, 63(24): 244207. doi: 10.7498/aps.63.244207
    [15] 郭建增, 刘铁根, 牛志峰, 任晓明. 不同振荡放大比MOPA型化学激光器的数值模拟. 物理学报, 2013, 62(7): 074203. doi: 10.7498/aps.62.074203
    [16] 秦艳, 曹威, 张中月. 内嵌矩形腔楔形金属狭缝的增强透射. 物理学报, 2013, 62(12): 127302. doi: 10.7498/aps.62.127302
    [17] 陈园园, 邹仁华, 宋钢, 张恺, 于丽, 赵玉芳, 肖井华. 纳米银线波导中表面等离极化波激发和辐射的偏振特性研究. 物理学报, 2012, 61(24): 247301. doi: 10.7498/aps.61.247301
    [18] 张志东, 赵亚男, 卢东, 熊祖洪, 张中月. 基于圆弧谐振腔的金属-介质-金属波导滤波器的数值研究. 物理学报, 2012, 61(18): 187301. doi: 10.7498/aps.61.187301
    [19] 曾志文, 刘海涛, 张斯文. 基于Fabry-Perot模型设计亚波长金属狭缝阵列光学异常透射折射率传感器. 物理学报, 2012, 61(20): 200701. doi: 10.7498/aps.61.200701
    [20] 缪江平, 吴宗汉, 孙承休, 孙岳明. 表面等离极化激元对电荷输运影响的自洽场理论研究. 物理学报, 2004, 53(8): 2728-2733. doi: 10.7498/aps.53.2728
计量
  • 文章访问数:  6369
  • PDF下载量:  168
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-20
  • 修回日期:  2018-07-19
  • 刊出日期:  2018-10-05

/

返回文章
返回