搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ni/Au/n-GaN肖特基二极管可导位错的电学模型

王翔 陈雷雷 曹艳荣 羊群思 朱培敏 杨国锋 王福学 闫大为 顾晓峰

引用本文:
Citation:

Ni/Au/n-GaN肖特基二极管可导位错的电学模型

王翔, 陈雷雷, 曹艳荣, 羊群思, 朱培敏, 杨国锋, 王福学, 闫大为, 顾晓峰

Physical model of conductive dislocations in GaN Schottky diodes

Wang Xiang, Chen Lei-Lei, Cao Yan-Rong, Yang Qun-Si, Zhu Pei-Min, Yang Guo-Feng, Wang Fu-Xue, Yan Da-Wei, Gu Xiao-Feng
PDF
导出引用
  • 可导线性位错被普遍认为是GaN基器件泄漏电流的主要输运通道,但其精细的电学模型目前仍不清楚.鉴于此,本文基于对GaN肖特基二极管的电流输运机制分析提出可导位错的物理模型,重点强调:1) 位于位错中心的深能级受主态(主要Ga空位)电离后库仑势较高,理论上对泄漏电流没有贡献;2) 位错周围的高浓度浅能级施主态电离后能形成势垒高度较低的薄表面耗尽层,可引发显著隧穿电流,成为主要漏电通道;3) 并非传统N空位,认为O替代N所形成的浅能级施主缺陷应是引发漏电的主要电学态,其热激活能约为47.5 meV.本工作亦有助于理解其他GaN器件的电流输运和电学退化行为.
    The excessive leakage current, commonly observed in GaN Schottky barrier diodes (SBDs), severely degrades device electrical performance and long-term reliability. This leakage current relates to the dislocation-related conductive states as observed by microscopy. Up to now, various transport models have been proposed to explain the leakage current, but none of them can clearly describe in physics the electrically active dislocations. One just equivalently regarded the electric defect as a continuum conductive defect state within the forbidden band, without considering the microscopic electrical properties of the dislocations. Here in this work, on the basis of numerical simulation, we propose a phenomenological model for the electrically active dislocations to explain the leakage conduction of the GaN Schottky diodes, which are fabricated on a freestanding bulk substrate n-GaN wafer with a low dislocation density of about 1.3106 cm-2. In this model, we emphasize that the acceptor-like traps at the core of dislocations could capture electrons from the nearby donor-like traps, resulting in a high Coulomb potential and a decreasing potential at the donor-like sites. In this case, the core of dislocations would be negatively charged, and not favor the electron transport due to a strong Coulomb scattering effect, while the shallow donor-like traps around them can lead to a significant tunneling leakage component. This model is consistent well with the common observation of the localized currents at the edges of the surface V-defects in GaN. The shallow donor-like defects in GaN induced by the substitution of oxygen for nitrogen (ON), rather than the nitrogen vacancies, act as the dominant donor impurities responsible for the significant leakage current, which has a density on the order of 1018 cm-3 and an activation energy of about 47.5 meV, because 1) it has been demonstrated that during the material growth, oxygen diffusion toward the surface pits of dislocations via nitrogen vacancies could produce an exponentially decayed distribution with a density of at least 1017 cm-3, in good agreement with our derivation; 2) by the first principle calculation, the thermal activation energy of the oxygen-related donors is determined to be about 50 meV, which is very close to our derived 47.5 meV. According to this model, we propose that reducing the ON defect density during device growth is a feasible method to suppress the high leakage current in GaN-based SBDs. In addition, this study can also improve our understanding of the leakage current in other GaN-based devices.
      通信作者: 顾晓峰, xgu@jiangnan.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61504050,11604124,51607022)资助的课题.
      Corresponding author: Gu Xiao-Feng, xgu@jiangnan.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61504050, 11604124, 51607022).
    [1]

    Cao X A, Stokes E B, Sandvik P M, LeBoeuf S F, Kretchmer J, Walker D 2002 IEEE Electron. Dev. Lett. 23 535

    [2]

    Hsu J W P, Manfra M J, Molnar R J, Heying B, Speck J S 2002 Appl. Phys. Lett. 81 79

    [3]

    Miller E J, Yu E T, Waltereit P, Speck J S 2004 Appl. Phys. Lett. 84 535

    [4]

    Miller E J, Schaadt D M, Yu E T, Poblenz C, Elsass C, Speck J S 2002 J. Appl. Phys. 91 9821

    [5]

    Zhang H, Miller E J, Yu E T 2006 Appl. Phys. Lett. 99 023703

    [6]

    Lei Y, Lu H, Cao D S, Chen D J, Zhang R, Zheng Y D 2013 Solid State Electron. 82 63

    [7]

    Hashizume T, Kotani J, Hasegawa H 2004 Appl. Phys. Lett. 84 4884

    [8]

    Ren B, Liao M, Sumiya M, Wang L, Koide Y, Sang L 2017 Appl. Phys. Express 10 051001

    [9]

    Sze S M, Ng K K 1981 Physics of Semiconductor Devices p163 (New York:Wiley)

    [10]

    Look D C, Stutz C E, Molnar R J, Saarinen K, Liliental-Weber Z 2001 Solid State Commun. 117 571

    [11]

    Ren J, Yan D W, Yang G F, Wang F X, Xiao S Q, Gu X F 2015 J. Appl. Phys. 117 154503

    [12]

    Ren J, Mou W J, Zhao L N, Yan D W, Yu Z G, Yang G F, Xiao S Q, Gu X F 2017 IEEE Trans. Electron Devices 64 407

    [13]

    Hawkridge M E, Cherns D 2005 Appl. Phys. Lett. 87 221903

    [14]

    Roy T, Zhang E X, Puzyrev Y S, Shen X, Fleetwood D M, Schrimpf R D, Koblmueller G, Chu R, Poblenz C, Fichtenbaum N, Suh C S, Mishra U K, Speck J S, Pantelides S T 2011 Appl. Phys. Lett. 99 203501

    [15]

    Jiang R, Shen X, Chen J, Duan G X, Zhang E X, Fleetwood D M, Schrimpf R D, Kaun S W, Kyle E C H, Speck J S, Pantelides S T 2016 Appl. Phys. Lett. 109 023511

    [16]

    Elsner J, Jones R, Heggie M I, Sitch P K, Haugk M, Frauenheim T, berg S, Briddon P R 1998 Phys. Rev. B 58 12571

    [17]

    Oila J, Kivioja J, Ranki V, Saarinen K, Look D C, Molnar R J, Park S S, Lee S K, Han J Y 2003 Appl. Phys. Lett. 82 3433

    [18]

    Lei H, Leipner H S, Schreiber J, Weyher J L, Wosiński T, Grzegory I 2002 J. Appl. Phys. 92 6666

    [19]

    Cherns D, Jiao C G 2001 Phys. Rev. Lett. 87 205504

    [20]

    Cao X A, Teetsov J A, Shahedipour-Sandvik F, Arthur S D 2004 J. Cryst. Growth 264 172

    [21]

    Han S W, Yang S, Sheng K 2018 IEEE Electron. Dev. Lett. 39 572

  • [1]

    Cao X A, Stokes E B, Sandvik P M, LeBoeuf S F, Kretchmer J, Walker D 2002 IEEE Electron. Dev. Lett. 23 535

    [2]

    Hsu J W P, Manfra M J, Molnar R J, Heying B, Speck J S 2002 Appl. Phys. Lett. 81 79

    [3]

    Miller E J, Yu E T, Waltereit P, Speck J S 2004 Appl. Phys. Lett. 84 535

    [4]

    Miller E J, Schaadt D M, Yu E T, Poblenz C, Elsass C, Speck J S 2002 J. Appl. Phys. 91 9821

    [5]

    Zhang H, Miller E J, Yu E T 2006 Appl. Phys. Lett. 99 023703

    [6]

    Lei Y, Lu H, Cao D S, Chen D J, Zhang R, Zheng Y D 2013 Solid State Electron. 82 63

    [7]

    Hashizume T, Kotani J, Hasegawa H 2004 Appl. Phys. Lett. 84 4884

    [8]

    Ren B, Liao M, Sumiya M, Wang L, Koide Y, Sang L 2017 Appl. Phys. Express 10 051001

    [9]

    Sze S M, Ng K K 1981 Physics of Semiconductor Devices p163 (New York:Wiley)

    [10]

    Look D C, Stutz C E, Molnar R J, Saarinen K, Liliental-Weber Z 2001 Solid State Commun. 117 571

    [11]

    Ren J, Yan D W, Yang G F, Wang F X, Xiao S Q, Gu X F 2015 J. Appl. Phys. 117 154503

    [12]

    Ren J, Mou W J, Zhao L N, Yan D W, Yu Z G, Yang G F, Xiao S Q, Gu X F 2017 IEEE Trans. Electron Devices 64 407

    [13]

    Hawkridge M E, Cherns D 2005 Appl. Phys. Lett. 87 221903

    [14]

    Roy T, Zhang E X, Puzyrev Y S, Shen X, Fleetwood D M, Schrimpf R D, Koblmueller G, Chu R, Poblenz C, Fichtenbaum N, Suh C S, Mishra U K, Speck J S, Pantelides S T 2011 Appl. Phys. Lett. 99 203501

    [15]

    Jiang R, Shen X, Chen J, Duan G X, Zhang E X, Fleetwood D M, Schrimpf R D, Kaun S W, Kyle E C H, Speck J S, Pantelides S T 2016 Appl. Phys. Lett. 109 023511

    [16]

    Elsner J, Jones R, Heggie M I, Sitch P K, Haugk M, Frauenheim T, berg S, Briddon P R 1998 Phys. Rev. B 58 12571

    [17]

    Oila J, Kivioja J, Ranki V, Saarinen K, Look D C, Molnar R J, Park S S, Lee S K, Han J Y 2003 Appl. Phys. Lett. 82 3433

    [18]

    Lei H, Leipner H S, Schreiber J, Weyher J L, Wosiński T, Grzegory I 2002 J. Appl. Phys. 92 6666

    [19]

    Cherns D, Jiao C G 2001 Phys. Rev. Lett. 87 205504

    [20]

    Cao X A, Teetsov J A, Shahedipour-Sandvik F, Arthur S D 2004 J. Cryst. Growth 264 172

    [21]

    Han S W, Yang S, Sheng K 2018 IEEE Electron. Dev. Lett. 39 572

  • [1] 武鹏, 朱宏宇, 吴金星, 张涛, 张进成, 郝跃. 基于湿法腐蚀凹槽阳极的低漏电高耐压AlGaN/GaN肖特基二极管. 物理学报, 2023, 72(17): 178501. doi: 10.7498/aps.72.20230709
    [2] 武鹏, 李若晗, 张涛, 张进成, 郝跃. AlGaN/GaN肖特基二极管阳极后退火界面态修复技术. 物理学报, 2023, 72(19): 198501. doi: 10.7498/aps.72.20230553
    [3] 武鹏, 张涛, 张进成, 郝跃. 低反向漏电自支撑衬底AlGaN/GaN肖特基二极管. 物理学报, 2022, 71(15): 158503. doi: 10.7498/aps.71.20220161
    [4] 刘成, 李明, 文章, 顾钊源, 杨明超, 刘卫华, 韩传余, 张勇, 耿莉, 郝跃. 复合漏电模型建立及阶梯场板GaN肖特基势垒二极管设计. 物理学报, 2022, 71(5): 057301. doi: 10.7498/aps.71.20211917
    [5] 刘成, 李明, 文章, 顾钊源, 杨明超, 刘卫华, 韩传余, 张勇, 耿莉, 郝跃. 复合漏电模型建立及阶梯场板GaN肖特基势垒二极管设计研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211917
    [6] 闫大为, 田葵葵, 闫晓红, 李伟然, 俞道欣, 李金晓, 曹艳荣, 顾晓峰. GaN肖特基二极管的正向电流输运和低频噪声行为. 物理学报, 2021, 70(8): 087201. doi: 10.7498/aps.70.20201467
    [7] 闫大为, 吴静, 闫晓红, 李伟然, 俞道欣, 曹艳荣, 顾晓峰. 晶格匹配InAlN/GaN异质结肖特基接触反向电流的电压与温度依赖关系. 物理学报, 2021, 70(7): 077201. doi: 10.7498/aps.70.20201355
    [8] 吴海妍, 唐建新, 李艳青. 基于缺陷态钝化的高效稳定蓝光钙钛矿发光二极管. 物理学报, 2020, 69(13): 138502. doi: 10.7498/aps.69.20200566
    [9] 邓小庆, 邓联文, 何伊妮, 廖聪维, 黄生祥, 罗衡. InGaZnO薄膜晶体管泄漏电流模型. 物理学报, 2019, 68(5): 057302. doi: 10.7498/aps.68.20182088
    [10] 唐杜, 贺朝会, 臧航, 李永宏, 熊涔, 张晋新, 张鹏, 谭鹏康. 硅单粒子位移损伤多尺度模拟研究. 物理学报, 2016, 65(8): 084209. doi: 10.7498/aps.65.084209
    [11] 王党会, 许天旱, 王荣, 雒设计, 姚婷珍. InGaN/GaN多量子阱结构发光二极管发光机理转变的低频电流噪声表征. 物理学报, 2015, 64(5): 050701. doi: 10.7498/aps.64.050701
    [12] 李维勤, 刘丁, 张海波. 高能电子照射绝缘样品的泄漏电流特性. 物理学报, 2014, 63(22): 227303. doi: 10.7498/aps.63.227303
    [13] 陈海峰, 过立新. 超薄栅超短沟LDD nMOSFET中栅电压对栅致漏极泄漏电流影响研究. 物理学报, 2012, 61(2): 028501. doi: 10.7498/aps.61.028501
    [14] 卓青青, 刘红侠, 杨兆年, 蔡惠民, 郝跃. 偏置条件对SOI NMOS器件总剂量辐照效应的影响. 物理学报, 2012, 61(22): 220702. doi: 10.7498/aps.61.220702
    [15] 刘海强, 过振, 王石语, 林林, 郭龙成, 李兵斌, 蔡德芳. 二极管端面抽运固体激光器晶体棒与热沉接触热导研究. 物理学报, 2011, 60(1): 014212. doi: 10.7498/aps.60.014212
    [16] 刘景旺, 杜振辉, 李金义, 齐汝宾, 徐可欣. DFB激光二极管电流-温度调谐特性的解析模型. 物理学报, 2011, 60(7): 074213. doi: 10.7498/aps.60.074213
    [17] 王思浩, 鲁庆, 王文华, 安霞, 黄如. 超陡倒掺杂分布对超深亚微米金属-氧化物-半导体器件总剂量辐照特性的改善. 物理学报, 2010, 59(3): 1970-1976. doi: 10.7498/aps.59.1970
    [18] 沈光地, 张剑铭, 邹德恕, 徐 晨, 顾晓玲. 大功率GaN基发光二极管的电流扩展效应及电极结构优化研究. 物理学报, 2008, 57(1): 472-476. doi: 10.7498/aps.57.472
    [19] 李宏伟, 王太宏. InAs自组装量子点GaAs肖特基二极管中的电流输运特性. 物理学报, 2001, 50(2): 262-267. doi: 10.7498/aps.50.262
    [20] 袁皓心, 李齐光, 姜山, 陆卫, 童斐明, 汤定元. Hg1-xCdxTe n+-p光电二极管中的深能级及其电流机构的流体静压力研究. 物理学报, 1990, 39(3): 464-471. doi: 10.7498/aps.39.464
计量
  • 文章访问数:  5305
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-21
  • 修回日期:  2018-07-02
  • 刊出日期:  2018-09-05

/

返回文章
返回