搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

量子相干态的二维电子光谱测量的原理、应用和发展

翁羽翔 王专 陈海龙 冷轩 朱锐丹

引用本文:
Citation:

量子相干态的二维电子光谱测量的原理、应用和发展

翁羽翔, 王专, 陈海龙, 冷轩, 朱锐丹

Quantum coherence measurement with femtosecond time-resolve two-dimensional electronic spectroscopy: principles, applications and outlook

Weng Yu-Xiang, Wang Zhuan, Chen Hai-Long, Leng Xuan, Zhu Rui-Dan
PDF
导出引用
  • 二维电子光谱是一种同时具有高的时间分辨率和光谱分辨率的非线性光谱学方法.它不仅可以对凝聚相分子复杂动力学过程进行直接测量,还可以测量不同电子态、电子态-振动态之间的量子相干过程.2007年,Flemming课题组利用二维电子光谱于低温77 K的条件下在捕光天线蛋白Fenna-Matthews-Olson中发现了能量传递过程存在量子相干现象.尽管后续的实验研究表明,该体系中实验观测到的量子相干现象不可能是由单纯的电子态相干引起的,然而这一实验现象的报道极大地激发了人们对天然或人工模拟光合系统中存在量子相干传能途径的探索,目前还是一个相当活跃的研究领域.本文旨在通过介绍二维电子光谱学原理、装置及其在光合作用体系能量传递中量子相干现象的应用,使二维电子光谱这种实验方法能够在更多的研究领域得以普及与推广.
    Two-dimensional electronic spectroscopy is a kind of nonlinear optical spectroscopy with both high time resolution and high frequency resolution. It can be used to observe the complex dynamics of a condensed molecular system. Meanwhile it is a very powerful tool to study the coherence between the electronic states or electronic and vibration states. In 2007, Flemming's group reported the long-lived quantum coherence observed in the energy transfer process in the light-harvesting antenna protein complex Fenna-Matthews-Olson at 77 K by means of two-dimensional electronic spectroscopy. Though it has been proved not to arise from the pure electronic coherence later, this discovery has greatly stimulated the exploration of the coherent energy transfer pathways possibly existing in the natural and artificial photosynthetic systems, and this is still a very active area nowadays. Here in this paper we briefly review the principle and set-up of the two-dimensional electronic spectroscopy, and also some of its applications in investigating coherent energy transfer in the photosynthetic and artificial systems, aiming to bring this novel spectroscopic tool into a wider application.
      通信作者: 翁羽翔, yxweng@iphy.ac.cn
    • 基金项目: 国家自然科学基金科学仪器基础研究专款(批准号:21227003)资助的课题.
      Corresponding author: Weng Yu-Xiang, yxweng@iphy.ac.cn
    • Funds: Project supported by the Special Fund for Basic Research on Scientific Instruments of the National Natural Science Foundation of China (Grant No. 21227003).
    [1]

    Engel G S, Calhoun T R, Read E L, Ahn T K, Mancal T, Cheng Y C, Blankenship R E, Fleming G R 2007 Nature 446 782

    [2]

    Panitchayangkoon G, Hayes D, Fransted K A, Caram J R, Harel E, Wen J Z, Blankenship R E, Engel G S 2010 Proc. Natl. Acad. Sci. USA 107 12766

    [3]

    Collini E, Wong C Y, Wilk K E, Curmi P M G, Brumer P, Scholes G D 2010 Nature 463 644

    [4]

    Weng Y X 2010 Physics 39 331 (in Chinese)[翁羽翔 2010 物理 39 331]

    [5]

    Ball P (translated by Weng Y X) 2018 Physics 47 249 (in Chinese)[保尔 P (翁羽翔 编译) 2018 物理 47 249]

    [6]

    Fuller F D, Pan J, Gelzinis A, Butkus V, Senlik S S, Wilcox D E, Yocum C F, Valkunas L, Abramavicius D, Ogilvie J P 2014 Nat. Chem. 6 706

    [7]

    Halpin A, Johnson P J M, Tempelaar R, Murphy R S, Knoester J, Jansen T L C, Miller R J D 2014 Nat. Chem. 6 196

    [8]

    Romero E, Augulis R, Novoderzhkin V I, Ferretti M, Thieme J, Zigmantas D, van Grondelle R 2014 Nat. Phys. 10 676

    [9]

    Dean J C, Mirkovic T, Toa Z D, Oblinsky D G, Scholes G D 2016 Chem 1 858

    [10]

    Weng Y X 2018 Chin. J. Chem. Phys. 31 135

    [11]

    Mukamel S 1995 Principles of Nonlinear Optical Spectroscopy (Oxford:Oxford University Press)

    [12]

    Hybl J D, Albrecht A W, Faeder S M G, Jonas D M 1998 Chem. Phys. Lett. 297 307

    [13]

    Oliver T A 2018 R. Soc. Open Sci. 5 171425

    [14]

    Davis J A, Tollerud J O 2017 Prog. Quant. Electron. 55 1

    [15]

    Brixner T, Hildner R, Kohler J, Lambert C, Wurthner F 2017 Adv. Energy Mater. 7 1700236

    [16]

    Nuernberger P, Ruetzel S, Brixner T 2015 Angew. Chem. Int. Ed. 54 11368

    [17]

    Fuller F D, Ogilvie J P 2015 Annu. Rev. Phys. Chem. 66 667

    [18]

    Schlau-Cohen G S, Dawlaty J M, Fleming G R 2012 IEEE J. Sel. Top. Quantum Electron. 18 283

    [19]

    Zhang Z, Tan H S 2014 Multidimensional Optical Spectroscopy Using a Pump-probe Configuration:Some Implementation Details (Singapore:World Scientific Publishing) pp29-35

    [20]

    Yue S, Wang Z, He X C, Zhu G B, Weng Y X 2015 Chin. J. Chem. Phys. 28 509

    [21]

    Yue S, Wang Z, Leng X, Zhu R D, Chen H L, Weng Y X 2017 Chem. Phys. Lett. 683 591

  • [1]

    Engel G S, Calhoun T R, Read E L, Ahn T K, Mancal T, Cheng Y C, Blankenship R E, Fleming G R 2007 Nature 446 782

    [2]

    Panitchayangkoon G, Hayes D, Fransted K A, Caram J R, Harel E, Wen J Z, Blankenship R E, Engel G S 2010 Proc. Natl. Acad. Sci. USA 107 12766

    [3]

    Collini E, Wong C Y, Wilk K E, Curmi P M G, Brumer P, Scholes G D 2010 Nature 463 644

    [4]

    Weng Y X 2010 Physics 39 331 (in Chinese)[翁羽翔 2010 物理 39 331]

    [5]

    Ball P (translated by Weng Y X) 2018 Physics 47 249 (in Chinese)[保尔 P (翁羽翔 编译) 2018 物理 47 249]

    [6]

    Fuller F D, Pan J, Gelzinis A, Butkus V, Senlik S S, Wilcox D E, Yocum C F, Valkunas L, Abramavicius D, Ogilvie J P 2014 Nat. Chem. 6 706

    [7]

    Halpin A, Johnson P J M, Tempelaar R, Murphy R S, Knoester J, Jansen T L C, Miller R J D 2014 Nat. Chem. 6 196

    [8]

    Romero E, Augulis R, Novoderzhkin V I, Ferretti M, Thieme J, Zigmantas D, van Grondelle R 2014 Nat. Phys. 10 676

    [9]

    Dean J C, Mirkovic T, Toa Z D, Oblinsky D G, Scholes G D 2016 Chem 1 858

    [10]

    Weng Y X 2018 Chin. J. Chem. Phys. 31 135

    [11]

    Mukamel S 1995 Principles of Nonlinear Optical Spectroscopy (Oxford:Oxford University Press)

    [12]

    Hybl J D, Albrecht A W, Faeder S M G, Jonas D M 1998 Chem. Phys. Lett. 297 307

    [13]

    Oliver T A 2018 R. Soc. Open Sci. 5 171425

    [14]

    Davis J A, Tollerud J O 2017 Prog. Quant. Electron. 55 1

    [15]

    Brixner T, Hildner R, Kohler J, Lambert C, Wurthner F 2017 Adv. Energy Mater. 7 1700236

    [16]

    Nuernberger P, Ruetzel S, Brixner T 2015 Angew. Chem. Int. Ed. 54 11368

    [17]

    Fuller F D, Ogilvie J P 2015 Annu. Rev. Phys. Chem. 66 667

    [18]

    Schlau-Cohen G S, Dawlaty J M, Fleming G R 2012 IEEE J. Sel. Top. Quantum Electron. 18 283

    [19]

    Zhang Z, Tan H S 2014 Multidimensional Optical Spectroscopy Using a Pump-probe Configuration:Some Implementation Details (Singapore:World Scientific Publishing) pp29-35

    [20]

    Yue S, Wang Z, He X C, Zhu G B, Weng Y X 2015 Chin. J. Chem. Phys. 28 509

    [21]

    Yue S, Wang Z, Leng X, Zhu R D, Chen H L, Weng Y X 2017 Chem. Phys. Lett. 683 591

  • [1] 江龙兴, 李庆超, 张旭, 李京峰, 张静, 陈祖信, 曾敏, 吴昊. 基于拓扑/二维量子材料的自旋电子器件. 物理学报, 2024, 73(1): 017505. doi: 10.7498/aps.73.20231166
    [2] 孙振辉, 胡丽贞, 徐玉良, 孔祥木. 准一维混合自旋(1/2, 5/2) Ising-XXZ模型的量子相干和互信息. 物理学报, 2023, 72(13): 130301. doi: 10.7498/aps.72.20230381
    [3] 王仲锐, 姜宇航. 转角二维量子材料中平带相关的新奇电子态物性. 物理学报, 2022, 71(12): 127202. doi: 10.7498/aps.71.20220064
    [4] 王志梅, 王虹, 薛乃涛, 成高艳. 自旋轨道耦合量子点系统中的量子相干. 物理学报, 2022, 71(7): 078502. doi: 10.7498/aps.71.20212111
    [5] 李子龙, 万源. 强关联电子体系二维相干光谱的理论研究评述. 物理学报, 2021, 70(23): 230308. doi: 10.7498/aps.70.20211556
    [6] 刘锋, 高冬梅, 蔡晓秋. 多体系统中相干资源的一般化理论. 物理学报, 2019, 68(23): 230301. doi: 10.7498/aps.68.20190966
    [7] 李保民, 胡明亮, 范桁. 量子相干. 物理学报, 2019, 68(3): 030304. doi: 10.7498/aps.68.20181779
    [8] 邢容, 谢双媛, 许静平, 羊亚平. 动态光子晶体中V型三能级原子的自发辐射. 物理学报, 2017, 66(1): 014202. doi: 10.7498/aps.66.014202
    [9] 秦陈陈, 杨双波. 二维Sinai台球系统的量子混沌研究. 物理学报, 2014, 63(14): 140507. doi: 10.7498/aps.63.140507
    [10] 杨军, 章曦, 苗仁德. 自旋场效应晶体管中隧道磁阻的势垒相关反转效应. 物理学报, 2014, 63(21): 217202. doi: 10.7498/aps.63.217202
    [11] 王红培, 王广龙, 喻颖, 徐应强, 倪海桥, 牛智川, 高凤岐. 内嵌InAs量子点的δ掺杂GaAs/AlxGa1-xAs二维电子气特性分析. 物理学报, 2013, 62(20): 207303. doi: 10.7498/aps.62.207303
    [12] 孙伟峰, 李美成, 赵连城. 低维半导体异质结中的量子相干红外发射机理理论研究. 物理学报, 2010, 59(9): 6185-6192. doi: 10.7498/aps.59.6185
    [13] 杨 军, 武文远, 龚艳春. 磁性隧道结中的量子相干输运研究. 物理学报, 2008, 57(1): 448-452. doi: 10.7498/aps.57.448
    [14] 周文政, 姚 炜, 朱 博, 仇志军, 郭少令, 林 铁, 崔利杰, 桂永胜, 褚君浩. 单边掺杂InAlAs/InGaAs单量子阱中二维电子气的磁输运特性. 物理学报, 2006, 55(4): 2044-2048. doi: 10.7498/aps.55.2044
    [15] 杨丽君, 张连水, 李晓莉, 李晓苇, 郭庆林, 韩 理, 傅广生. 多窗口可调谐电磁诱导透明研究. 物理学报, 2006, 55(10): 5206-5210. doi: 10.7498/aps.55.5206
    [16] 徐学友, 张延惠, 黄发忠, 林圣路, 杜孟利. 二维椭圆量子台球中的谱分析. 物理学报, 2005, 54(10): 4538-4542. doi: 10.7498/aps.54.4538
    [17] 胡振华, 黄德修. 非对称耦合量子阱吸收与色散的理论研究. 物理学报, 2005, 54(4): 1788-1793. doi: 10.7498/aps.54.1788
    [18] 郭 永, 顾秉林, 川添良幸. 磁量子结构中二维自旋电子的隧穿输运. 物理学报, 2000, 49(9): 1814-1820. doi: 10.7498/aps.49.1814
    [19] 彭建平, 周世勋. 复连通二维电子系统电阻量子化的理论解释. 物理学报, 1990, 39(9): 1461-1464. doi: 10.7498/aps.39.1461
    [20] 熊小明, 周世勋. 强磁场中二维电子的量子运动. 物理学报, 1987, 36(7): 935-939. doi: 10.7498/aps.36.935
计量
  • 文章访问数:  8342
  • PDF下载量:  497
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-23
  • 修回日期:  2018-05-08
  • 刊出日期:  2019-06-20

/

返回文章
返回