搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单晶铁金属表面污染物的激光烧蚀机理

白清顺 张凯 沈荣琦 张飞虎 苗心向 袁晓东

引用本文:
Citation:

单晶铁金属表面污染物的激光烧蚀机理

白清顺, 张凯, 沈荣琦, 张飞虎, 苗心向, 袁晓东

Laser ablation mechanism of contamination on surface of single crystal iron

Bai Qing-Shun, Zhang Kai, Shen Rong-Qi, Zhang Fei-Hu, Miao Xin-Xiang, Yuan Xiao-Dong
PDF
导出引用
  • 激光惯性约束核聚变装置中要求光学元件能够承受极高的激光通量,因此对装置内部洁净度有很高的要求.研究表明装置内部的颗粒污染物主要来源于装置内的机械结构件,杂散光作用下机械结构件表面的损伤将产生颗粒污染物.精密金属构件的激光诱导损伤问题是制约高功率激光装置超洁净制造的重要因素.由于机械结构件表面不可避免地存在污染物,因此本文基于传统的分子动力学能量耦合方式,模拟了激光与表面吸附污染物单晶铁的相互作用过程,探讨了铁材料在激光作用下的烧蚀行为,并分析了激光加载方式和激光能量密度对铁材料烧蚀的作用情况,对比研究了材料表面有无污染物对材料烧蚀的影响情况.研究表明:激光作用下铁材料表面原子在污染物原子的剧烈碰撞下呈现出不同的运动状态;激光能量瞬时加载时更容易烧蚀铁材料;当激光能量密度低于0.0064 J/cm2时,将去除铁材料表面的污染物并不会对铁材料产生烧蚀现象,进一步分析表明铁材料表面吸附污染物时更容易被激光烧蚀.研究结果可为提高高功率激光装置的内部洁净度、实现系统超洁净控制提供理论依据.
    The laser induced damage in high-power laser system has received much attention in the area of laser engineering. Optical components with contaminants, which are installed in the final optical assembly (FOA), can be severely damaged under the action of extremely high laser energy. So the ultra-high cleanliness inside the high-energy laser system is required for both optical and mechanical components. Research shows that a large part of the metal particulate contaminants inside the device come from the mechanical components. The metal particulate contaminants are produced when mechanical structure surface is damaged under the irradiation of stray light. However the research about the cleanliness inside the device is mostly concentrated on the surfaces of optical components currently. The laser ablation of the mechanical components absorbing contaminants is studied little, so it is quite important to investigate the ablation mechanism of mechanical components under laser irradiation. Due to the presence of contaminants on the surfaces of mechanical components, laser ablation of monocrystalline iron absorbing contaminants is investigated by using molecular dynamics simulation. The ablation process of iron material under laser irradiation is presented. The influences of loading mode and energy density of laser as well as contamination on the surface are analyzed in the ablation process of monocrystalline iron. The results indicate that the surface atoms of monocrystalline iron show different motion states under the violent collision of contaminants atoms after laser loading. Ablated iron can be divided into ablation zone, melting zone and crystal zone according to the variation of the temperature and mass density of the atoms in each region of the ablated material. The atoms in each region show macroscopic characteristics of gaseous, liquid and solid atoms respectively. Iron is damaged more easily when laser energy is instantaneously loaded. Contaminants on the surface of iron can be removed, and iron cannot be damaged when laser energy density is below 0.0064 J/cm2. The result of the analysis shows that the presence of contaminants makes the ablation of iron easier. Different energy loading modes affect the heat transfer mode directly. Monocrystalline iron materials are more likely to be damaged in the mode of adiabatic laser ablation in the case of short laser pulse. Thermal effect can be thought as a dominant factor for the ablation in the case of long laser pulse. The research results of this paper are helpful for providing the theoretical basis for improving the cleanliness of high-power laser system.
    • 基金项目: 国家自然科学基金(批准号:51535003,51575138)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51535003, 51575138).
    [1]

    Hossain M I, Alharbi F H 2013 Mater. Technol. 28 88

    [2]

    Moses E I 2010 IEEE T. Plasma Sci. 38 684

    [3]

    Cavailler C 2005 Plasma Phys. Contr. F. 47 B389

    [4]

    Palmier S, Rullier J L, Capoulade J, Natoli J Y 2008 Appl. Optics 47 1164

    [5]

    Bude J, Miller P, Baxamusa S, Shen N, Laurence T, Steele W, Suratwala T, Wong L, Carr W, Cross D, Monticelli M 2014 Opt. Express 22 5839

    [6]

    Spaeth M L, Manes K R, Honig J 2016 Fusion Sci. Technol. 69 250

    [7]

    Raman R N, Demos S G, Shen N, Feigenbaum E, Negres R A, Elhadj S, Alexander M, Rubenchik A M, Matthews M J 2016 Optics Express 24 2634

    [8]

    Bude J, Carr C W, Cross D, et al 2017 Opt. Express 25 11414

    [9]

    Manenkov A A 2013 Optical Engineering 53 010901

    [10]

    Suratwala T I, Miller P E, Bude J D, Steele R A, Shen N, Monticelli M V, Feit M D, Laurence T A, Norton M A, Carr C W, Wong L L 2011 J. Am. Ceram. Soc. 94 416

    [11]

    Bude J, Miller P, Baxamusa S, Shen N, Laurence T, Steele W, Suratwala T, Wong L, Carr W, Cross D, Monticelli M 2014 Opt. Express 22 5839

    [12]

    Bass I L, Guss G M, Nostrand M J, Wegner P L 2010 Laser-Induced Damage in Optical Materials, International Society for Optics and Photon (Boulder: SPIE) p784220

    [13]

    Bertussi B, Cormont P, Palmier S, Legros P, Rullier J L 2009 Opt. Express 17 11469

    [14]

    Chambonneau M, Chanal M, Reyne S, Duchateau G, Natoli J Y, Lamaignere L 2015 Appl. Opt. 54 1463

    [15]

    Feigenbaum E, Raman R N, Cross D, Carr C W, Matthews M J 2016 Opt. Express 24 10527

    [16]

    Rajgarhia R K, Spearot D E, Saxena A 2009 Comp. Mater. Sci. 44 1258

    [17]

    Alvarez M, Lomba E, Martin C, Lombardero M 1995 J. Chem. Phys. 103 3680

    [18]

    Khosroshahia M E, Pour F A, Hadavi M, Mahmoodi M 2010 Appl. Surf. Sci. 256 7421

    [19]

    Hirayama Y, Atanasov P A, Obara M, Nedialkov N N, Imamova S E 2006 Jpn. J. Appl. Phys. 45 792

  • [1]

    Hossain M I, Alharbi F H 2013 Mater. Technol. 28 88

    [2]

    Moses E I 2010 IEEE T. Plasma Sci. 38 684

    [3]

    Cavailler C 2005 Plasma Phys. Contr. F. 47 B389

    [4]

    Palmier S, Rullier J L, Capoulade J, Natoli J Y 2008 Appl. Optics 47 1164

    [5]

    Bude J, Miller P, Baxamusa S, Shen N, Laurence T, Steele W, Suratwala T, Wong L, Carr W, Cross D, Monticelli M 2014 Opt. Express 22 5839

    [6]

    Spaeth M L, Manes K R, Honig J 2016 Fusion Sci. Technol. 69 250

    [7]

    Raman R N, Demos S G, Shen N, Feigenbaum E, Negres R A, Elhadj S, Alexander M, Rubenchik A M, Matthews M J 2016 Optics Express 24 2634

    [8]

    Bude J, Carr C W, Cross D, et al 2017 Opt. Express 25 11414

    [9]

    Manenkov A A 2013 Optical Engineering 53 010901

    [10]

    Suratwala T I, Miller P E, Bude J D, Steele R A, Shen N, Monticelli M V, Feit M D, Laurence T A, Norton M A, Carr C W, Wong L L 2011 J. Am. Ceram. Soc. 94 416

    [11]

    Bude J, Miller P, Baxamusa S, Shen N, Laurence T, Steele W, Suratwala T, Wong L, Carr W, Cross D, Monticelli M 2014 Opt. Express 22 5839

    [12]

    Bass I L, Guss G M, Nostrand M J, Wegner P L 2010 Laser-Induced Damage in Optical Materials, International Society for Optics and Photon (Boulder: SPIE) p784220

    [13]

    Bertussi B, Cormont P, Palmier S, Legros P, Rullier J L 2009 Opt. Express 17 11469

    [14]

    Chambonneau M, Chanal M, Reyne S, Duchateau G, Natoli J Y, Lamaignere L 2015 Appl. Opt. 54 1463

    [15]

    Feigenbaum E, Raman R N, Cross D, Carr C W, Matthews M J 2016 Opt. Express 24 10527

    [16]

    Rajgarhia R K, Spearot D E, Saxena A 2009 Comp. Mater. Sci. 44 1258

    [17]

    Alvarez M, Lomba E, Martin C, Lombardero M 1995 J. Chem. Phys. 103 3680

    [18]

    Khosroshahia M E, Pour F A, Hadavi M, Mahmoodi M 2010 Appl. Surf. Sci. 256 7421

    [19]

    Hirayama Y, Atanasov P A, Obara M, Nedialkov N N, Imamova S E 2006 Jpn. J. Appl. Phys. 45 792

  • [1] 陆云杰, 陶弢, 赵斌, 郑坚. 激光烧蚀固体碳氢材料的离子组分分离研究. 物理学报, 2023, 72(7): 075201. doi: 10.7498/aps.72.20230013
    [2] 曾启昱, 陈博, 康冬冬, 戴佳钰. 大规模、量子精度的分子动力学模拟: 以极端条件液态铁为例. 物理学报, 2023, 72(18): 187102. doi: 10.7498/aps.72.20231258
    [3] 周毛吉, 李亚举, 钱东斌, 叶晓燕, 林平, 马新文. 粒径对激光驱动颗粒溅射动力学特征的影响. 物理学报, 2022, 71(14): 145203. doi: 10.7498/aps.71.20220243
    [4] 张硕, 龙连春, 刘静毅, 杨洋. 分子动力学方法研究缺陷对铁单质薄膜磁致伸缩的影响. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211177
    [5] 朱琪, 王升涛, 赵福祺, 潘昊. 层错四面体对单晶铜层裂行为影响的分子动力学研究. 物理学报, 2020, 69(3): 036201. doi: 10.7498/aps.69.20191425
    [6] 第伍旻杰, 胡晓棉. 单晶Ce冲击相变的分子动力学模拟. 物理学报, 2020, 69(11): 116202. doi: 10.7498/aps.69.20200323
    [7] 王云天, 曾祥国, 杨鑫. 高应变率下温度对单晶铁中孔洞成核与生长影响的分子动力学研究. 物理学报, 2019, 68(24): 246102. doi: 10.7498/aps.68.20190920
    [8] 罗乐乐, 窦志国, 叶继飞. 掺杂红外染料聚叠氮缩水甘油醚工质激光烧蚀推进性能优化探索. 物理学报, 2018, 67(18): 187901. doi: 10.7498/aps.67.20180479
    [9] 康小卫, 陈龙, 陈洁, 盛政明. 大气环境下飞秒激光对铝靶烧蚀过程的研究. 物理学报, 2016, 65(5): 055204. doi: 10.7498/aps.65.055204
    [10] 段兴跃, 李小康, 程谋森, 李干. 激光烧蚀掺杂金属聚合物羽流屏蔽特性数值研究. 物理学报, 2016, 65(19): 197901. doi: 10.7498/aps.65.197901
    [11] 李干, 程谋森, 李小康. 激光烧蚀聚甲醛的热-化学耦合模型及其验证. 物理学报, 2014, 63(10): 107901. doi: 10.7498/aps.63.107901
    [12] 马彬, 饶秋华, 贺跃辉, 王世良. 单晶钨纳米线拉伸变形机理的分子动力学研究. 物理学报, 2013, 62(17): 176103. doi: 10.7498/aps.62.176103
    [13] 包凌东, 韩敬华, 段涛, 孙年春, 高翔, 冯国英, 杨李茗, 牛瑞华, 刘全喜. 纳秒紫外重复脉冲激光烧蚀单晶硅的热力学过程研究. 物理学报, 2012, 61(19): 197901. doi: 10.7498/aps.61.197901
    [14] 汪志刚, 吴亮, 张杨, 文玉华. 面心立方铁纳米粒子的相变与并合行为的分子动力学研究. 物理学报, 2011, 60(9): 096105. doi: 10.7498/aps.60.096105
    [15] 邵建立, 秦承森, 王裴. 动态压缩下马氏体相变力学性质的微观研究. 物理学报, 2009, 58(3): 1936-1941. doi: 10.7498/aps.58.1936
    [16] 郑新亮, 李广山, 钟寿仙, 田进寿, 李振红, 任兆玉. 激光烧蚀对碳纳米管薄膜场发射性能的影响. 物理学报, 2008, 57(12): 7912-7918. doi: 10.7498/aps.57.7912
    [17] 黄庆举. 激光烧蚀金属Al诱导发光的动力学研究. 物理学报, 2008, 57(4): 2314-2319. doi: 10.7498/aps.57.2314
    [18] 周宗荣, 王 宇, 夏源明. γ-TiAl金属间化合物面缺陷能的分子动力学研究. 物理学报, 2007, 56(3): 1526-1531. doi: 10.7498/aps.56.1526
    [19] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究. 物理学报, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [20] 罗 晋, 祝文军, 林理彬, 贺红亮, 经福谦. 单晶铜在动态加载下空洞增长的分子动力学研究. 物理学报, 2005, 54(6): 2791-2798. doi: 10.7498/aps.54.2791
计量
  • 文章访问数:  4860
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-23
  • 修回日期:  2018-08-24
  • 刊出日期:  2018-12-05

/

返回文章
返回