搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁磁异质结构中的超快自旋流调制实现相干太赫兹辐射

张顺浓 朱伟骅 李炬赓 金钻明 戴晔 张宗芝 马国宏 姚建铨

引用本文:
Citation:

铁磁异质结构中的超快自旋流调制实现相干太赫兹辐射

张顺浓, 朱伟骅, 李炬赓, 金钻明, 戴晔, 张宗芝, 马国宏, 姚建铨

Coherent terahertz radiation via ultrafast manipulation of spin currents in ferromagnetic heterostructures

Zhang Shun-Nong, Zhu Wei-Hua, Li Ju-Geng, Jin Zuan-Ming, Dai Ye, Zhang Zong-Zhi, Ma Guo-Hong, Yao Jian-Quan
PDF
导出引用
  • 利用飞秒激光脉冲在生长于二氧化硅衬底上的W/CoFeB/Pt和Ta/CoFeB/Pt两类铁磁/非磁性金属异质结构中实现高效、宽带的相干THz脉冲辐射.实验中,THz脉冲的相位随外加磁场的反转而反转,表明THz辐射与样品的磁有序密切相关.为了考察三层膜结构THz辐射的物理机制,分别研究了构成三层膜结构的双层异质结构(包括CoFeB/W,CoFeB/Pt和CoFeB/Ta)的THz辐射.实验结果都与逆自旋霍尔效应相符合,W/CoFeB/Pt和Ta/CoFeB/Pt三层膜结构所辐射的THz强度优于同等激发功率下的ZnTe(厚度0.5 mm)晶体.此外,还研究了两款异质结构和ZnTe的THz辐射强度与激发光脉冲能量密度的关系,发现Ta/CoFeB/Pt的饱和能量密度略大于W/CoFeB/Pt的饱和能量密度,表明自旋电子在Ta/CoFeB/Pt中的界面积累效应相对较小.
    The development of efficient terahertz (THz) radiation sources is driven by the scientific and technological applications. To date, as far as the radiation of THz pulses is concerned, the widely used methods are biased semiconductor, electro-optical crystal and air plasma, which are excited separately by femtosecond laser pulses. The mechanisms involved in these THz sources are photo-carrier acceleration, second order nonlinear effect, and plasma oscillations, respectively. Here, we report the generation of coherent THz radiation in the designed ferromagnetic/non-magnetic metallic W/CoFeB/Pt and Ta/CoFeB/Pt trilayers on SiO2 substrates, excited separately by ultrafast laser pulses. The transient THz electric field is fully inverted when the magnetization is reversed, which indicates a strong connection between THz radiation and spin order of the sample. We present the THz radiation results of the bilayers, CoFeB/W, CoFeB/Pt and CoFeB/Ta, which are comprised of the trilayer heterostructures used in our experiments. We find that all experimental results are in good agreement with the results from the inversed spin-Hall effect (ISHE) mechanism. Owing to the ISHE, the transient spin current converts into a transient transverse charge current, which launches the THz electromagnetic wave. In our experiments, W or Ta has an opposite spin Hall angle to Pt. Therefore, the amplitude of the THz emission can be increased by a constructive superposition of two charge currents in metallic layers. Our results indicate that the peak-values of the THz radiation covering the 0-2.5 THz range from W/CoFeB/Pt and Ta/CoFeB/Pt are stronger than that from 0.5 mm thick ZnTe (110) crystal, under very similar excitation conditions. Finally, we investigate the dependence of peak-to-peak values for two different heterostructures on the pump fluence. The saturations of THz pulse at pump fluences of~0.47 mJ/cm2 and~0.61 mJ/cm2 are found for W/CoFeB/Pt and Ta/CoFeB/Pt heterostructures, respectively. The saturation can be generally attributed to the spin accumulation effect and laser-induced thermal effect. Our results indicate that the spin accumulation effect, by which the density of spin-polarized electrons is restricted in a non-magnetic metallic layer, is slightly less pronounced for Ta/CoFeB/Pt system at high fluences. Our findings provide a new pathway for fabricating the spintronic THz emitter, which is comparable to the conventional nonlinear optical crystals.
      Corresponding author: Jin Zuan-Ming, physics_jzm@shu.edu.cn;physics_jzm@shu.edu.cn;ghma@staff.shu.edu.cn ; Zhang Zong-Zhi, physics_jzm@shu.edu.cn;physics_jzm@shu.edu.cn;ghma@staff.shu.edu.cn ; Ma Guo-Hong, physics_jzm@shu.edu.cn;physics_jzm@shu.edu.cn;ghma@staff.shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11604202, 11674213, 61735010, 51671057, 11774220), the Young Eastern Scholar, China (Grant No. QD2015020), Chen Guang Project of the Shanghai Municipal Education Commission of China and the Shanghai Education Development Foundation of China (Grant No. 16CG45), and the Shanghai Rising-Star Program, China (Grant No. 18QA1401700).
    [1]

    Tonouchi M 2007 Nat. Photon. 1 97

    [2]

    Ferguson B, Zhang X C 2002 Nat. Mater. 1 26

    [3]

    Jin Z, Tkach A, Casper F, Spetter V, Grimm H, Thomas A, Kampfrath T, Bonn M, Klui M, Turchinovich D 2015 Nat. Phys. 11 761

    [4]

    Ulbricht R, Hendry E, Shan J, Heinz T F, Bonn M 2011 Rev. Mod. Phys. 83 543

    [5]

    Fischer B M, Walther M, Jepsen P U 2002 Phys. Med. Biol. 47 3807

    [6]

    Siegel P H 2004 IEEE Trans. Microw. Theory Tech. 52 2438

    [7]

    Zhang R, Li H, Cao J C, Feng S L 2009 Acta Phys. Sin. 58 4618 (in Chinese) [张戎, 黎华, 曹俊诚, 封松林 2009 物理学报 58 4618]

    [8]

    Jin Z, Mics Z, Ma G, Cheng Z, Bonn M, Turchinovich D 2013 Phys. Rev. B 87 094422

    [9]

    Lewis R A 2014 J. Phys. D:Appl. Phys. 47 374001

    [10]

    Wang W M, Zhang L L, Li Y T, Sheng Z M, Zhang J 2018 Acta Phys. Sin. 67 124202 (in Chinese) [王伟民, 张亮亮, 李玉同, 盛政明, 张杰 2018 物理学报 67 124202]

    [11]

    Nahata A, Weling A S, Heinz T F 1996 Appl. Phys. Lett. 69 2321

    [12]

    Zhong K, Yao J Q, Xu D G, Zhang H Y, Wang P 2011 Acta Phys. Sin. 60 034210 (in Chinese) [钟凯, 姚建铨, 徐德刚, 张会云, 王鹏 2011 物理学报 60 034210]

    [13]

    Matsuura S, Tani M, Sakai K 1997 Appl. Phys. Lett. 70 559

    [14]

    Shi W, Yan Z J 2015 Acta Phys. Sin. 64 228702 (in Chinese) [施卫, 闫志巾 2015 物理学报 64 228702]

    [15]

    Beaurepaire E, Turner G M, Harrel S M, Beard M C, Bigot J Y, Schmuttenmaer C A 2004 Appl. Phys. Lett. 84 3465

    [16]

    Hilton D J, Averitt R D, Meserole C A, Fisher G L, Funk D J, Thompson J D, Taylor A J 2004 Opt. Lett. 29 1805

    [17]

    Shen J, Fan X, Chen Z, de Camp M F, Zhang H, Xiao J Q 2012 Appl. Phys. Lett. 101 072401

    [18]

    Nishant K, Hendrikx R W, Adam A J, Planken P C 2015 Opt. Express 23 14252

    [19]

    Gorelov S D, Mashkovich E A, Tsarev M V, Bakunov M I 2013 Phys. Rev. B 88 220411

    [20]

    Mikhaylovskiy R V, Hendry E, Kruglyak V V, Pisarev R V, Rasing T, Kimel A V 2014 Phys. Rev. B 90 184405

    [21]

    Mikhaylovskiy R V, Hendry E, Secchi A, Mentink J H, Eckstein M, Wu A, Pisarev R V, Kruglyak V V, Katsnelson M I, Rasing T, Kimel A V 2015 Nature Commun. 6 8190

    [22]

    Kampfrath T, Battiato M, Maldonado P, Eilers G, Notzold J, Mahrlein S, Zbarsky V, Freimuth F, Mokrousov Y, Blugel S, Wolf M, Radu I, Oppeneer P M, Munzenberg M 2013 Nature Nanotech. 8 256

    [23]

    Wu Y, Elyasi M, Qiu X, Chen M, Liu Y, Ke L, Yang H 2017 Adv. Mater. 29 1603031

    [24]

    Yang D, Liang J, Zhou C, Sun L, Zheng R, Luo S, Wu Y, Qi J 2016 Adv. Opt. Mater. 4 1944

    [25]

    Qiu H S, Kato K, Hirota K, Sarukura N, Yoshimura M, Nakajima M 2018 Opt. Express 26 15247

    [26]

    Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Mnzenberg M, Klui M, Kampfrath T 2016 Nature Photon. 10 483

    [27]

    Seifert T, Jaiswal S, Sajadi M, Jakob G, Winnerl S, Wolf M, Klui M, Kampfrath T 2017 Appl. Phys. Lett. 110 252402

    [28]

    Seifert T, Martens U, Gnther S, Schoen M A W, Radu F, Chen X Z, Lucas I, Ramos R, Aguirre M H, Algarabel P A, Anadn A, Krner H S, Walowski J, Back C, Ibarra M R, Morelln L, Saitoh E, Wolf M, Song C, Uchida K, Mnzenberg M, Radu I, Kampfrath T 2017 Spin 7 1740010

    [29]

    Torosyan G, Keller S, Scheuer L, Beigang R, Papaioannou E T 2018 Sci. Rep. 8 1311

    [30]

    Sasaki Y, Suzuki K Z, Mizukami S 2017 Appl. Phys. Lett. 111 102401

    [31]

    Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203

    [32]

    Eschenlohr A, Battiato M, Maldonad P, Pontius N, Kachel T, Holldack K, Mitzner R, Fhlisch A, Oppeneer P M, Stamm C 2013 Nat. Mater. 12 332

    [33]

    Melnikov A, Razdolski I, Wehling T O, Papaioannou E T, Roddatis V, Fumagalli P, Aktsipetrov O, Lichtenstein A I, Bovensiepen U 2011 Phys. Rev. Lett. 107 076601

    [34]

    Rudolf D, Chan L O, Battiato M, Adam R, Shaw J M, Turgut E, Maldonado P, Mathias S, Grychtol P, Nembach H T, Silva T J, Aeschlimann M, Kapteyn H C, Murnane M M, Schneider C M, Oppeneer P M 2012 Nature Commun. 3 1037

    [35]

    Cramer J, Seifert T, Kronenberg A, Fuhrmann F, Jakob G, Jourdan M, Kampfrath T, Klaui M 2018 Nano Lett. 18 1064

    [36]

    Zhang S, Jin Z, Zhu Z, Zhu W, Zhang Z, Ma G, Yao J 2018 J. Phys. D:Appl. Phys. 51 034001

    [37]

    Hao Q, Xiao G 2015 Phys. Rev. Appl. 3 034009

    [38]

    Tanaka T, Kontani H, Naito M, Naito T, Hirashima D S, Yamada K, Inoue J 2008 Phys. Rev. B 77 165117

    [39]

    Huisman T J, Mikhaylovskiy R V, Costa J D, Freimuth F, Paz E, Ventura J, Freitas P P, Blugel S, Mokrousov Y, Rasing T, Kimel A V 2016 Nat. Nanotechnol. 11 455

    [40]

    Huisman T J, Rasing T 2017 J. Phys. Soc. Jpn. 86 011009

    [41]

    Wang X M, Zhao Y, Wang X M, Jiang T, Shen C L, Li W H, Peng L P, Yan D W, Zhan Z Q, Deng Q H, Wu W D, Tang Y J 2015 Mater. Lett. 153 81

    [42]

    Li Y, Wang X, Xiong Z, Cao L, Chen J, Wang X, Shen C, Peng L, Zhao Y, Li W, Deng Q, Wang J, Yu J, Yin H, Wu W 2016 J. Alloy. Compd. 686 841

    [43]

    Kinoshita Y, Kida N, Sotome M, Miyamoto T, Iguchi Y, Onose Y, Okamoto H 2016 ACS Photon. 3 1170

    [44]

    Zhang S, Jin Z, Liu X, Zhao W, Lin X, Jing C, Ma G 2017 Opt. Lett. 42 3080

    [45]

    Barnes M E, Berry S A, Gow P, McBryde D, Daniell G J, Beere H E, Ritchie D A, Apostolopoulos V 2013 Opt. Express 21 16263

  • [1]

    Tonouchi M 2007 Nat. Photon. 1 97

    [2]

    Ferguson B, Zhang X C 2002 Nat. Mater. 1 26

    [3]

    Jin Z, Tkach A, Casper F, Spetter V, Grimm H, Thomas A, Kampfrath T, Bonn M, Klui M, Turchinovich D 2015 Nat. Phys. 11 761

    [4]

    Ulbricht R, Hendry E, Shan J, Heinz T F, Bonn M 2011 Rev. Mod. Phys. 83 543

    [5]

    Fischer B M, Walther M, Jepsen P U 2002 Phys. Med. Biol. 47 3807

    [6]

    Siegel P H 2004 IEEE Trans. Microw. Theory Tech. 52 2438

    [7]

    Zhang R, Li H, Cao J C, Feng S L 2009 Acta Phys. Sin. 58 4618 (in Chinese) [张戎, 黎华, 曹俊诚, 封松林 2009 物理学报 58 4618]

    [8]

    Jin Z, Mics Z, Ma G, Cheng Z, Bonn M, Turchinovich D 2013 Phys. Rev. B 87 094422

    [9]

    Lewis R A 2014 J. Phys. D:Appl. Phys. 47 374001

    [10]

    Wang W M, Zhang L L, Li Y T, Sheng Z M, Zhang J 2018 Acta Phys. Sin. 67 124202 (in Chinese) [王伟民, 张亮亮, 李玉同, 盛政明, 张杰 2018 物理学报 67 124202]

    [11]

    Nahata A, Weling A S, Heinz T F 1996 Appl. Phys. Lett. 69 2321

    [12]

    Zhong K, Yao J Q, Xu D G, Zhang H Y, Wang P 2011 Acta Phys. Sin. 60 034210 (in Chinese) [钟凯, 姚建铨, 徐德刚, 张会云, 王鹏 2011 物理学报 60 034210]

    [13]

    Matsuura S, Tani M, Sakai K 1997 Appl. Phys. Lett. 70 559

    [14]

    Shi W, Yan Z J 2015 Acta Phys. Sin. 64 228702 (in Chinese) [施卫, 闫志巾 2015 物理学报 64 228702]

    [15]

    Beaurepaire E, Turner G M, Harrel S M, Beard M C, Bigot J Y, Schmuttenmaer C A 2004 Appl. Phys. Lett. 84 3465

    [16]

    Hilton D J, Averitt R D, Meserole C A, Fisher G L, Funk D J, Thompson J D, Taylor A J 2004 Opt. Lett. 29 1805

    [17]

    Shen J, Fan X, Chen Z, de Camp M F, Zhang H, Xiao J Q 2012 Appl. Phys. Lett. 101 072401

    [18]

    Nishant K, Hendrikx R W, Adam A J, Planken P C 2015 Opt. Express 23 14252

    [19]

    Gorelov S D, Mashkovich E A, Tsarev M V, Bakunov M I 2013 Phys. Rev. B 88 220411

    [20]

    Mikhaylovskiy R V, Hendry E, Kruglyak V V, Pisarev R V, Rasing T, Kimel A V 2014 Phys. Rev. B 90 184405

    [21]

    Mikhaylovskiy R V, Hendry E, Secchi A, Mentink J H, Eckstein M, Wu A, Pisarev R V, Kruglyak V V, Katsnelson M I, Rasing T, Kimel A V 2015 Nature Commun. 6 8190

    [22]

    Kampfrath T, Battiato M, Maldonado P, Eilers G, Notzold J, Mahrlein S, Zbarsky V, Freimuth F, Mokrousov Y, Blugel S, Wolf M, Radu I, Oppeneer P M, Munzenberg M 2013 Nature Nanotech. 8 256

    [23]

    Wu Y, Elyasi M, Qiu X, Chen M, Liu Y, Ke L, Yang H 2017 Adv. Mater. 29 1603031

    [24]

    Yang D, Liang J, Zhou C, Sun L, Zheng R, Luo S, Wu Y, Qi J 2016 Adv. Opt. Mater. 4 1944

    [25]

    Qiu H S, Kato K, Hirota K, Sarukura N, Yoshimura M, Nakajima M 2018 Opt. Express 26 15247

    [26]

    Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Mnzenberg M, Klui M, Kampfrath T 2016 Nature Photon. 10 483

    [27]

    Seifert T, Jaiswal S, Sajadi M, Jakob G, Winnerl S, Wolf M, Klui M, Kampfrath T 2017 Appl. Phys. Lett. 110 252402

    [28]

    Seifert T, Martens U, Gnther S, Schoen M A W, Radu F, Chen X Z, Lucas I, Ramos R, Aguirre M H, Algarabel P A, Anadn A, Krner H S, Walowski J, Back C, Ibarra M R, Morelln L, Saitoh E, Wolf M, Song C, Uchida K, Mnzenberg M, Radu I, Kampfrath T 2017 Spin 7 1740010

    [29]

    Torosyan G, Keller S, Scheuer L, Beigang R, Papaioannou E T 2018 Sci. Rep. 8 1311

    [30]

    Sasaki Y, Suzuki K Z, Mizukami S 2017 Appl. Phys. Lett. 111 102401

    [31]

    Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203

    [32]

    Eschenlohr A, Battiato M, Maldonad P, Pontius N, Kachel T, Holldack K, Mitzner R, Fhlisch A, Oppeneer P M, Stamm C 2013 Nat. Mater. 12 332

    [33]

    Melnikov A, Razdolski I, Wehling T O, Papaioannou E T, Roddatis V, Fumagalli P, Aktsipetrov O, Lichtenstein A I, Bovensiepen U 2011 Phys. Rev. Lett. 107 076601

    [34]

    Rudolf D, Chan L O, Battiato M, Adam R, Shaw J M, Turgut E, Maldonado P, Mathias S, Grychtol P, Nembach H T, Silva T J, Aeschlimann M, Kapteyn H C, Murnane M M, Schneider C M, Oppeneer P M 2012 Nature Commun. 3 1037

    [35]

    Cramer J, Seifert T, Kronenberg A, Fuhrmann F, Jakob G, Jourdan M, Kampfrath T, Klaui M 2018 Nano Lett. 18 1064

    [36]

    Zhang S, Jin Z, Zhu Z, Zhu W, Zhang Z, Ma G, Yao J 2018 J. Phys. D:Appl. Phys. 51 034001

    [37]

    Hao Q, Xiao G 2015 Phys. Rev. Appl. 3 034009

    [38]

    Tanaka T, Kontani H, Naito M, Naito T, Hirashima D S, Yamada K, Inoue J 2008 Phys. Rev. B 77 165117

    [39]

    Huisman T J, Mikhaylovskiy R V, Costa J D, Freimuth F, Paz E, Ventura J, Freitas P P, Blugel S, Mokrousov Y, Rasing T, Kimel A V 2016 Nat. Nanotechnol. 11 455

    [40]

    Huisman T J, Rasing T 2017 J. Phys. Soc. Jpn. 86 011009

    [41]

    Wang X M, Zhao Y, Wang X M, Jiang T, Shen C L, Li W H, Peng L P, Yan D W, Zhan Z Q, Deng Q H, Wu W D, Tang Y J 2015 Mater. Lett. 153 81

    [42]

    Li Y, Wang X, Xiong Z, Cao L, Chen J, Wang X, Shen C, Peng L, Zhao Y, Li W, Deng Q, Wang J, Yu J, Yin H, Wu W 2016 J. Alloy. Compd. 686 841

    [43]

    Kinoshita Y, Kida N, Sotome M, Miyamoto T, Iguchi Y, Onose Y, Okamoto H 2016 ACS Photon. 3 1170

    [44]

    Zhang S, Jin Z, Liu X, Zhao W, Lin X, Jing C, Ma G 2017 Opt. Lett. 42 3080

    [45]

    Barnes M E, Berry S A, Gow P, McBryde D, Daniell G J, Beere H E, Ritchie D A, Apostolopoulos V 2013 Opt. Express 21 16263

  • [1] 郑转平, 刘榆杭, 曾方, 赵帅宇, 朱礼鹏. 基于太赫兹光谱的DL-谷氨酸及其一水合物的定性及定量研究. 物理学报, 2023, 72(8): 083201. doi: 10.7498/aps.72.20222314
    [2] 郑转平, 刘榆杭, 赵帅宇, 蒋杰伟, 卢乐. 姜黄素与邻苯二酚共晶的太赫兹光谱. 物理学报, 2023, 72(17): 173201. doi: 10.7498/aps.72.20230739
    [3] 姜在超, 宫正, 钟芸襄, 崔彬, 邹斌, 杨玉平. 基于几何相位的太赫兹编码超表面反射器研制与测试. 物理学报, 2023, 72(24): 248707. doi: 10.7498/aps.72.20230989
    [4] 杜梦瑶, 邱志勇. Ni/Pt异质结界面的自旋阻塞效应. 物理学报, 2023, 72(5): 057501. doi: 10.7498/aps.72.20222288
    [5] 魏高帅, 张慧, 吴晓君, 张洪瑞, 王春, 王博, 汪力, 孙继荣. 飞秒激光泵浦LaAlO3/SrTiO3异质结产生太赫兹波辐射. 物理学报, 2022, 71(9): 090702. doi: 10.7498/aps.71.20201139
    [6] 陈乐迪, 范仁浩, 刘雨, 唐贡惠, 马中丽, 彭茹雯, 王牧. 基于柔性超构材料宽带调控太赫兹波的偏振态. 物理学报, 2022, 71(18): 187802. doi: 10.7498/aps.71.20220801
    [7] 彭晓昱, 周欢. 太赫兹波生物效应. 物理学报, 2022, (): . doi: 10.7498/aps.71.20211996
    [8] 侯磊, 王俊喃, 王磊, 施卫. α-乳糖水溶液太赫兹吸收光谱实验研究及模拟分析. 物理学报, 2021, 70(24): 243202. doi: 10.7498/aps.70.20211716
    [9] 彭晓昱, 周欢. 太赫兹波生物效应. 物理学报, 2021, 70(24): 240701. doi: 10.7498/aps.70.20211996
    [10] 加孜拉·哈赛恩, 朱恪嘉, 孙飞, 吴艳玲, 石友国, 赵继民. 三重简并拓扑半金属MoP中超快圆偏振光产生和调控光生热电流. 物理学报, 2020, 69(20): 207801. doi: 10.7498/aps.69.20200031
    [11] 姜聪颖, 孙飞, 冯子力, 刘世炳, 石友国, 赵继民. 三重简并拓扑半金属磷化钼的时间分辨超快动力学. 物理学报, 2020, 69(7): 077801. doi: 10.7498/aps.69.20191816
    [12] 冯正, 王大承, 孙松, 谭为. 自旋太赫兹源:性能、调控及其应用. 物理学报, 2020, 69(20): 208705. doi: 10.7498/aps.69.20200757
    [13] 苏玉伦, 尉正行, 程亮, 齐静波. 基于超快自旋-电荷转换的太赫兹辐射源. 物理学报, 2020, 69(20): 204202. doi: 10.7498/aps.69.20200715
    [14] 宋邦菊, 金钻明, 郭晨阳, 阮舜逸, 李炬赓, 万蔡华, 韩秀峰, 马国宏, 姚建铨. Y3Fe5O12(YIG)/Pt异质结构中基于超快自旋塞贝克效应产生太赫兹相干辐射研究. 物理学报, 2020, 69(20): 208704. doi: 10.7498/aps.69.20200733
    [15] 何冬梅, 彭斌, 张万里, 张文旭. 掺铌SrTiO3中的逆自旋霍尔效应. 物理学报, 2019, 68(10): 106101. doi: 10.7498/aps.68.20190118
    [16] 林贤, 金钻明, 李炬赓, 郭飞云, 庄乃锋, 陈建中, 戴晔, 阎晓娜, 马国宏. 非线性克尔效应对飞秒激光偏振的超快调制. 物理学报, 2018, 67(23): 237801. doi: 10.7498/aps.67.20181450
    [17] 韩方彬, 张文旭, 彭斌, 张万里. NiFe/Pt薄膜中角度相关的逆自旋霍尔效应. 物理学报, 2015, 64(24): 247202. doi: 10.7498/aps.64.247202
    [18] 司黎明, 侯吉旋, 刘埇, 吕昕. 基于负微分电阻碳纳米管的太赫兹波有源超材料特性参数提取. 物理学报, 2013, 62(3): 037806. doi: 10.7498/aps.62.037806
    [19] 王玥, 吴群, 施卫, 贺训军, 殷景华. 基于纳观域碳纳米管的太赫兹波天线研究. 物理学报, 2009, 58(2): 919-924. doi: 10.7498/aps.58.919
    [20] 姚建明, 杨翀. AB效应对自旋多端输运的影响. 物理学报, 2009, 58(5): 3390-3396. doi: 10.7498/aps.58.3390
计量
  • 文章访问数:  6298
  • PDF下载量:  194
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-15
  • 修回日期:  2018-07-26
  • 刊出日期:  2018-10-05

/

返回文章
返回