搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

绝缘体上硅金属氧化物半导体场效应晶体管中辐射导致的寄生效应研究

彭超 恩云飞 李斌 雷志锋 张战刚 何玉娟 黄云

引用本文:
Citation:

绝缘体上硅金属氧化物半导体场效应晶体管中辐射导致的寄生效应研究

彭超, 恩云飞, 李斌, 雷志锋, 张战刚, 何玉娟, 黄云

Radiation induced parasitic effect in silicon-on-insulator metal-oxide-semiconductor field-effect transistor

Peng Chao1\2, En Yun-Fei, Li Bin, Lei Zhi-Feng, Zhang Zhan-Gang, He Yu-Juan, Huang Yun
PDF
导出引用
  • 基于60Co γ射线源研究了总剂量辐射对绝缘体上硅(silicon on insulator,SOI)金属氧化物半导体场效应晶体管器件的影响.通过对比不同尺寸器件的辐射响应,分析了导致辐照后器件性能退化的不同机制.实验表明:器件的性能退化来源于辐射增强的寄生效应;浅沟槽隔离(shallow trench isolation,STI)寄生晶体管的开启导致了关态漏电流随总剂量呈指数增加,直到达到饱和;STI氧化层的陷阱电荷共享导致了窄沟道器件的阈值电压漂移,而短沟道器件的阈值电压漂移则来自于背栅阈值耦合;在同一工艺下,尺寸较小的器件对总剂量效应更敏感.探讨了背栅和体区加负偏压对总剂量效应的影响,SOI器件背栅或体区的负偏压可以在一定程度上抑制辐射增强的寄生效应,从而改善辐照后器件的电学特性.
    In this paper, we investigate the total ionizing dose (TID) effects of silicon-on-isolator (SOI) metal-oxide-semiconductor field-effect transistors (MOSFETs) with different sizes by using 60Co γ-ray. The SOI MOSFET contains a shallow trench isolation (STI) edge parasitic transistor and back gate parasitic transistor, in which STI oxide and buried oxide (BOX) are used as gate oxide, respectively. Although these parasitic effects are minimized by semiconductor device process, the radiation-induced trapped-charge can lead these parasitic effects to strengthen, thereby affecting the electrical characteristics of the main transistor. Since both the STI and BOX are sensitive to the TID effect, we try to distinguish their different influences on SOI devices in this work.The experimental results show that the characteristic degradation of device originates from the radiation-enhanced parasitic effect. The turning-on of the STI parasitic transistor leads the off-state leakage current to exponentially increase with total dose increasing until the off-state leakage reaches a saturation level. The threshold voltage shift observed in the narrow channel device results from the charge sharing in the STI, while the back gate coupling is a dominant contributor to the threshold voltage shift in short channel device. These results are explained by two simple models. The experimental data are consistent with the model calculation results. We can conclude that the smaller size device is more sensitive to TID effect in the same process.Furthermore, the influence of the negative bias at back gate and body on the radiation effect are also studied. The negative bias at back gate will partially neutralize the effect of positive trapped-charge in STI and that in BOX, thus suppressing the turning-on of STI parasitic transistor and the back gate coupling. The parasitic transistors share a common body region with the main transistor. So exerting body negative bias can increase the threshold voltage of the parasitic transistor, thereby restraining the TID effect. The experimental and simulation results show that the adjustment of the threshold voltage of parasitic transistor by body negative bias is limited due to the thin body region. The modulation of body negative bias in depletion region is more obvious in back gate parasitic transistor than in STI parasitic transistor. The weakening of parasitic conduction in the back channel is more noticeable than at STI sidewall under a body negative bias.
      通信作者: 彭超, 576167714@qq.com
    • 基金项目: 国家自然科学基金(批准号:61704031)和博士后创新人才支持计划(批准号:BX201600037)资助的课题.
      Corresponding author: Peng Chao1\2, 576167714@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61704031) and the National Postdoctoral Program for Innovative Talents, China (Grant No. BX201600037).
    [1]

    Rezzak N, Zhang E X, Alles M L, Schrimpf R D, Hughes H 2010 Proceedings of the IEEE International SOI Conference San Diego, USA, October 11-14, 2010 p1

    [2]

    Simoen E, Gaillardin M, Paillet P, Reed R A, Schrimpf R D, Alles M L, El-Mamouni F, Fleetwood D M, Griffoni A, Claeys C 2013 IEEE Trans. Nucl. Sci. 60 1970

    [3]

    Peng C, Hu Z, Ning B, Dai L, Bi D, Zhang Z 2015 Solid-State Electron. 106 81

    [4]

    Schwank J R, Shaneyfelt M R, Dodd P E, Ferlet-Cavrois V, Loemker R A, Winokur P S, Fleetwood D M, Paillet P, Leray J L, Draper B L, Witczak S C, Riewe L C 2000 IEEE Trans. Nucl. Sci. 47 2175

    [5]

    Schwank J R, Shaneyfelt M R, Fleetwood D M, Felix J A, Dodd P E, Paillet P, Ferlet-Cavrois V 2008 IEEE Trans. Nucl. Sci. 55 1833

    [6]

    Rudra J K, Fowler W B 1987 Phys. Rev. B 35 8223

    [7]

    Barnaby H J 2006 IEEE Trans. Nucl. Sci. 53 3103

    [8]

    Gaillardin M, Paillet P, Ferlet-Cavrois V, Faynot O, Jahan C, Cristoloveanu S 2006 IEEE Trans. Nucl. Sci. 53 3158

    [9]

    He B P, Ding L L, Yao Z B, Xiao Z G, Huang S Y, Wang Z J 2011 Acta Phys. Sin. 60 056105 (in Chinese)[何宝平, 丁李利, 姚志斌, 肖志刚, 黄绍燕, 王祖军 2011 物理学报 60 056105]

    [10]

    Hu Z Y, Liu Z L, Shao H, Zhang Z X, Ning B X, Chen M, Bi D W, Zou S C 2011 Chin. Phys. B 20 120702

    [11]

    Barnaby H J, McLain M, Esqueda I S 2007 Nucl. Instrum. Meth. Phys. Res. B 261 1142

    [12]

    Liu Z L, Hu Z Y, Zhang Z X, Shao H, Chen M, Bi D W, Ning B X, Zou S C 2011 Chin. Phys. B 20 120703

    [13]

    Gaillardin M, Goiffon V, Marcandella C, Girard S, Martinez M, Paillet P, Magnan P, Estribeau M 2013 IEEE Trans. Nucl. Sci. 60 2623

    [14]

    Liu Y, Chen H B, Liu Y R, Wang X, En Y F, Li B, Lu Y D 2015 Chin. Phys. B 24 088503

    [15]

    Gaillardin M, Paillet P, Ferlet-Cavrois V, Cristoloveanu S, Faynot O, Jahan C 2006 Appl. Phys. Lett. 88 223511

    [16]

    Peng L, Zhuo Q Q, Liu H X, Cai H M 2012 Acta Phys. Sin. 61 240703 (in Chinese)[彭里, 卓青青, 刘红侠, 蔡惠民 2012 物理学报 61 240703]

    [17]

    Gaillardin M, Martinez M, Paillet P, Andrieu F, Girard S, Raine M, Marcandella C, Duhamel O, Richard N, Faynot O 2013 IEEE Trans. Nucl. Sci. 60 2583

    [18]

    Wolf S, Tauber R N 2002 Silicon Processing for the VLSI Era (Vol. 4) (California: Lattice Press) p674

    [19]

    Niu G, Mathew S J, Banerjee G, Cressler J D, Clark S D, Palmer M J, Subbanna S 1999 IEEE Trans. Nucl. Sci. 46 1841

    [20]

    Muller R S, Kamins T I, Chan M, Ko P K 1986 Device Electronics for Integrated Circuits (New York: John Wiley & Sons) p54

    [21]

    Synopsys 2013 Sentaurus Device User Guide (Version H-201303) (Mountain View: Synopsys)

    [22]

    Barnaby H J, McLain M L, Esqueda I S, Chen X J 2009 IEEE Tran. Circuits Syst. I 56 1870

  • [1]

    Rezzak N, Zhang E X, Alles M L, Schrimpf R D, Hughes H 2010 Proceedings of the IEEE International SOI Conference San Diego, USA, October 11-14, 2010 p1

    [2]

    Simoen E, Gaillardin M, Paillet P, Reed R A, Schrimpf R D, Alles M L, El-Mamouni F, Fleetwood D M, Griffoni A, Claeys C 2013 IEEE Trans. Nucl. Sci. 60 1970

    [3]

    Peng C, Hu Z, Ning B, Dai L, Bi D, Zhang Z 2015 Solid-State Electron. 106 81

    [4]

    Schwank J R, Shaneyfelt M R, Dodd P E, Ferlet-Cavrois V, Loemker R A, Winokur P S, Fleetwood D M, Paillet P, Leray J L, Draper B L, Witczak S C, Riewe L C 2000 IEEE Trans. Nucl. Sci. 47 2175

    [5]

    Schwank J R, Shaneyfelt M R, Fleetwood D M, Felix J A, Dodd P E, Paillet P, Ferlet-Cavrois V 2008 IEEE Trans. Nucl. Sci. 55 1833

    [6]

    Rudra J K, Fowler W B 1987 Phys. Rev. B 35 8223

    [7]

    Barnaby H J 2006 IEEE Trans. Nucl. Sci. 53 3103

    [8]

    Gaillardin M, Paillet P, Ferlet-Cavrois V, Faynot O, Jahan C, Cristoloveanu S 2006 IEEE Trans. Nucl. Sci. 53 3158

    [9]

    He B P, Ding L L, Yao Z B, Xiao Z G, Huang S Y, Wang Z J 2011 Acta Phys. Sin. 60 056105 (in Chinese)[何宝平, 丁李利, 姚志斌, 肖志刚, 黄绍燕, 王祖军 2011 物理学报 60 056105]

    [10]

    Hu Z Y, Liu Z L, Shao H, Zhang Z X, Ning B X, Chen M, Bi D W, Zou S C 2011 Chin. Phys. B 20 120702

    [11]

    Barnaby H J, McLain M, Esqueda I S 2007 Nucl. Instrum. Meth. Phys. Res. B 261 1142

    [12]

    Liu Z L, Hu Z Y, Zhang Z X, Shao H, Chen M, Bi D W, Ning B X, Zou S C 2011 Chin. Phys. B 20 120703

    [13]

    Gaillardin M, Goiffon V, Marcandella C, Girard S, Martinez M, Paillet P, Magnan P, Estribeau M 2013 IEEE Trans. Nucl. Sci. 60 2623

    [14]

    Liu Y, Chen H B, Liu Y R, Wang X, En Y F, Li B, Lu Y D 2015 Chin. Phys. B 24 088503

    [15]

    Gaillardin M, Paillet P, Ferlet-Cavrois V, Cristoloveanu S, Faynot O, Jahan C 2006 Appl. Phys. Lett. 88 223511

    [16]

    Peng L, Zhuo Q Q, Liu H X, Cai H M 2012 Acta Phys. Sin. 61 240703 (in Chinese)[彭里, 卓青青, 刘红侠, 蔡惠民 2012 物理学报 61 240703]

    [17]

    Gaillardin M, Martinez M, Paillet P, Andrieu F, Girard S, Raine M, Marcandella C, Duhamel O, Richard N, Faynot O 2013 IEEE Trans. Nucl. Sci. 60 2583

    [18]

    Wolf S, Tauber R N 2002 Silicon Processing for the VLSI Era (Vol. 4) (California: Lattice Press) p674

    [19]

    Niu G, Mathew S J, Banerjee G, Cressler J D, Clark S D, Palmer M J, Subbanna S 1999 IEEE Trans. Nucl. Sci. 46 1841

    [20]

    Muller R S, Kamins T I, Chan M, Ko P K 1986 Device Electronics for Integrated Circuits (New York: John Wiley & Sons) p54

    [21]

    Synopsys 2013 Sentaurus Device User Guide (Version H-201303) (Mountain View: Synopsys)

    [22]

    Barnaby H J, McLain M L, Esqueda I S, Chen X J 2009 IEEE Tran. Circuits Syst. I 56 1870

  • [1] 李济芳, 郭红霞, 马武英, 宋宏甲, 钟向丽, 李洋帆, 白如雪, 卢小杰, 张凤祁. 石墨烯场效应晶体管的X射线总剂量效应. 物理学报, 2024, 73(5): 058501. doi: 10.7498/aps.73.20231829
    [2] 李俊霖, 李瑞宾, 丁李利, 陈伟, 刘岩. 脉冲γ射线诱发N型金属氧化物场效应晶体管纵向寄生效应开启机制分析. 物理学报, 2022, 71(4): 046104. doi: 10.7498/aps.71.20211691
    [3] 张书豪, 袁章亦安, 乔明, 张波. 超薄屏蔽层300 V SOI LDMOS抗电离辐射总剂量仿真研究. 物理学报, 2022, 71(10): 107301. doi: 10.7498/aps.71.20220041
    [4] 张晋新, 王信, 郭红霞, 冯娟, 吕玲, 李培, 闫允一, 吴宪祥, 王辉. 三维数值仿真研究锗硅异质结双极晶体管总剂量效应. 物理学报, 2022, 71(5): 058502. doi: 10.7498/aps.71.20211795
    [5] 李顺, 宋宇, 周航, 代刚, 张健. 双极型晶体管总剂量效应的统计特性. 物理学报, 2021, 70(13): 136102. doi: 10.7498/aps.70.20201835
    [6] 李俊霖, 李瑞宾, 丁李利, 陈伟, 刘岩. 脉冲γ射线诱发N型金属氧化物场效应晶体管纵向寄生效应开启机制分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211691
    [7] 张晋新, 王信, 郭红霞, 冯娟. 基于三维数值仿真的SiGe HBT总剂量效应关键影响因素机理研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211795
    [8] 陈睿, 梁亚楠, 韩建伟, 王璇, 杨涵, 陈钱, 袁润杰, 马英起, 上官士鹏. 氮化镓基高电子迁移率晶体管单粒子和总剂量效应的实验研究. 物理学报, 2021, 70(11): 116102. doi: 10.7498/aps.70.20202028
    [9] 王硕, 常永伟, 陈静, 王本艳, 何伟伟, 葛浩. 新型绝缘体上硅静态随机存储器单元总剂量效应. 物理学报, 2019, 68(16): 168501. doi: 10.7498/aps.68.20190405
    [10] 秦丽, 郭红霞, 张凤祁, 盛江坤, 欧阳晓平, 钟向丽, 丁李利, 罗尹虹, 张阳, 琚安安. 铁电存储器60Co γ射线及电子总剂量效应研究. 物理学报, 2018, 67(16): 166101. doi: 10.7498/aps.67.20180829
    [11] 周航, 郑齐文, 崔江维, 余学峰, 郭旗, 任迪远, 余德昭, 苏丹丹. 总剂量效应致0.13m部分耗尽绝缘体上硅N型金属氧化物半导体场效应晶体管热载流子增强效应. 物理学报, 2016, 65(9): 096104. doi: 10.7498/aps.65.096104
    [12] 周航, 崔江维, 郑齐文, 郭旗, 任迪远, 余学峰. 电离辐射环境下的部分耗尽绝缘体上硅n型金属氧化物半导体场效应晶体管可靠性研究. 物理学报, 2015, 64(8): 086101. doi: 10.7498/aps.64.086101
    [13] 王信, 陆妩, 吴雪, 马武英, 崔江维, 刘默寒, 姜柯. 深亚微米金属氧化物场效应晶体管及寄生双极晶体管的总剂量效应研究. 物理学报, 2014, 63(22): 226101. doi: 10.7498/aps.63.226101
    [14] 卓青青, 刘红侠, 彭里, 杨兆年, 蔡惠民. 总剂量辐照条件下部分耗尽半导体氧化物绝缘层N沟道金属氧化物半导体器件的三种kink效应. 物理学报, 2013, 62(3): 036105. doi: 10.7498/aps.62.036105
    [15] 胡志远, 刘张李, 邵华, 张正选, 宁冰旭, 毕大炜, 陈明, 邹世昌. 深亚微米器件沟道长度对总剂量辐照效应的影响. 物理学报, 2012, 61(5): 050702. doi: 10.7498/aps.61.050702
    [16] 周昕杰, 李蕾蕾, 周毅, 罗静, 于宗光. 辐照下背栅偏置对部分耗尽型绝缘层上硅器件背栅效应影响及机理分析. 物理学报, 2012, 61(20): 206102. doi: 10.7498/aps.61.206102
    [17] 李明, 余学峰, 薛耀国, 卢健, 崔江维, 高博. 部分耗尽绝缘层附着硅静态随机存储器总剂量辐射损伤效应的研究. 物理学报, 2012, 61(10): 106103. doi: 10.7498/aps.61.106103
    [18] 刘张李, 胡志远, 张正选, 邵华, 宁冰旭, 毕大炜, 陈明, 邹世昌. 0.18 m MOSFET器件的总剂量辐照效应. 物理学报, 2011, 60(11): 116103. doi: 10.7498/aps.60.116103
    [19] 贺朝会, 耿斌, 何宝平, 姚育娟, 李永宏, 彭宏论, 林东生, 周辉, 陈雨生. 大规模集成电路总剂量效应测试方法初探. 物理学报, 2004, 53(1): 194-199. doi: 10.7498/aps.53.194
    [20] 贺朝会, 耿斌, 杨海亮, 陈晓华, 王燕萍, 李国政. 浮栅ROM器件的辐射效应实验研究. 物理学报, 2003, 52(1): 180-187. doi: 10.7498/aps.52.180
计量
  • 文章访问数:  4926
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-16
  • 修回日期:  2018-08-20
  • 刊出日期:  2018-11-05

/

返回文章
返回