搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黑腔中等离子体相互作用的流体力学现象观测

黎航 杨冬 李三伟 况龙钰 李丽灵 袁铮 张海鹰 于瑞珍 杨志文 陈韬 曹柱荣 蒲昱东 缪文勇 王峰 杨家敏 江少恩 丁永坤 胡广月 郑坚

引用本文:
Citation:

黑腔中等离子体相互作用的流体力学现象观测

黎航, 杨冬, 李三伟, 况龙钰, 李丽灵, 袁铮, 张海鹰, 于瑞珍, 杨志文, 陈韬, 曹柱荣, 蒲昱东, 缪文勇, 王峰, 杨家敏, 江少恩, 丁永坤, 胡广月, 郑坚

Observation of hydrodynamic phenomena of plasma interaction in hohlraums

Li Hang, Yang Dong, Li San-Wei, Kuang Long-Yu, Li Li-Ling, Yuan Zheng, Zhang Hai-Ying, Yu Rui-Zhen, Yang Zhi-Wen, Chen Tao, Cao Zhu-Rong, Pu Yu-Dong, Miao Wen-Yong, Wang Feng, Yang Jia-Min, Jiang Shao-En, Ding Yong-Kun, Hu Guang-Yue, Zheng Jian
PDF
导出引用
  • 激光间接驱动惯性约束聚变实验中,黑腔内情况复杂,在激光烧蚀和辐射烧蚀等的驱动下,光斑区、冕区、纯辐射烧蚀区、射流区的多种等离子体以不同规律运动.发展了X光双能段窄能带的时间分辨成像方法,用以观测黑腔内多种等离子体的运动情况.在真空黑腔中观测到清晰的射流,分析了射流产生机制及其速度;在黑腔中充气,能有效消除射流和抑制冕区等离子体运动,但两种物质界面处可能会出现流体力学不稳定性等现象,分析了界面处的压力平衡关系和密度陡变情况.
    In indirect-drive inertial confinement fusion (ICF), laser beams are injected into a high-Z hohlraum and the laser energy is converted into intense X-ray radiation, which ablates a capsule located in the center of the hohlraum, and thus making it implode. To achieve high implosion efficiency, it is required that the hohlraum inner wall plasma movement, which will block further laser injection through the laser entrance hole (LEH), be suppressed. Evolution of hohlraum radiation nonuniformity caused by the plasma movement will result in implosion asymmetry which will prevent the ignition from happening. Therefore it is very important to study the hydrodynamic movement of high-Z plasma in ICF experiment.
    In ICF hohlraum, various plasmas of laser spots, corona, radiation ablation and jets move in different ways driven by laser ablation and X-ray radiation ablation, which is hard to observe and study. An X-ray dual spectral band time-resolved imaging method is developed to clearly observe the motion of various plasmas in hohlraum. Based on the time-resolved X-ray framing camera, using the typical gold plasma emission spectrum, the gold microstrip MCP response spectrum, and the 1.5 μm Al or 3 μm Ti filter transmittance spectrum, the two narrow-band X-ray peaks at 0.8 keV and 2.5 keV are highlighted. The 0.8 keV X-ray shows the Planck spectrum of gold plasma, and 2.5 keV X-ray indicates the M-band of gold plasma.
    In the vacuum hohlraum, jets are observed clearly, which are verified to be 4 times the sound speed experimentally. The generation mechanism of gold plasma jets in the ICF hohlraum is mainly due to collision rather than magnetic field, because it is estimated that thermal pressure is much bigger than magnetic pressure. In the gas-filled hohlraum, low-Z C5H12 gas can effectively eliminate high-Z gold jets and suppress the high-Z gold coronal plasma movement. The interface between the low-Z and high-Z substance is observed clearly, and gold plasma is accumulated obviously in the later period at the interface. Moreover, spike and filamentous structure occur at the interface between the two substances, which is probably caused by the hydrodynamic instability. The 0.8 keV rather than 2.5 keV X-ray is observed around inner wall, which originates from the low-temperature plasma driven by radiation ablation and is predicted by simulation code. Furthermore, the pressure balance between the two substances and the density steepness at the interface are also analyzed.
    • 基金项目: 国家自然科学基金(批准号:11435011,11775204,11505170,11405160,11305160)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11435011, 11775204, 11505170, 11405160, 11305160).
    [1]

    Atzeni S, Meyer-ter-Vehn J 2004 The Physics of Inertial Fusion (Oxford: Clarendon Press) p131

    [2]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [3]

    Glenzer S H, Alley W E, Estabrook K G, de Groot J S, Haines M G, Hammer J H, Jadaud J P, Macgowan B J, Moody J D, Rozmus W, Suter L J, Weiland T L, Williams E A 1999 Phys. Plasmas 6 2117

    [4]

    Foster J M, Wilde B H, Rosen P A, Perry T S, Fell M, Edwards M J, Lasinski B F, Turner R E, Gittings M L 2002 Phys. Plasmas 9 2251

    [5]

    Li C K, Seguin F H, Frenje J A, Rosenberg M, Petrasso R D, Amendt P A, Koch J A, Landen O L, Park H S, Robey H F, Town R P J, Casner A, Philippe F, Betti R, Knauer J P, Meyerhofer D D, Back C A, Kilkenny J D, Nikroo A 2010 Science 327 1231

    [6]

    Budil K S, Perry T S, Bell P M 1996 Rev. Sci. Instrum. 67 485

    [7]

    Dewald E L, Rosen M, Glenzer S H, Suter L J, Girard F, Jadaud J P, Schein J, Constantin C, Wagon F, Huser G, Neumayer P, Landen O L 2008 Phys. Plasmas 15 072706

    [8]

    Rochau G A, Bailey J E, Chandler G A, Nash T J, Nielsen D S, Dunham G S, Garcia O F, Joseph N R, Keister J W, Madlener M J, Morgan D V, Moy K J, Wu M 2006 Rev. Sci. Instrum 77 10E323

    [9]

    Riodel M S, Dejus R J 2004 AIP Conference Proceedings 705 784

    [10]

    Li H, Song T M, Yang J M, Zhu T, Lin Z W, Zheng J H, Kuang L Y, Zhang H Y, Yu R Z, Liu S Y, Jiang S E, Ding Y K, Hu G Y, Zhao B, Zheng J 2015 Phys. Plasmas 22 072705

    [11]

    Nilson P M, Willingale L, Kaluza M C, Kamperidis C, Minardi S, Wei M S, Fernandes P, Notley M 2006 Phys. Rev. Lett. 97 255001

    [12]

    Zhong J Y, Li Y T, Wang X G, Wang J Q, Dong Q L, Xiao C J, Wang S J, Liu X, Zhang L, An L, Wang F L, Zhu J Q, Gu Y A, He X T, Zhao G, Zhang J 2010 Nat. Phys. 6 984

    [13]

    Ma Y Z, Xu B B, Ge Z Y, Gan L F, Meng L, Wang S W, Kawata S 2018 Phys. Plasmas 25 042706

    [14]

    Guo H Y, Wang L F, Ye W H, Wu J F, Zhang W Y 2017 Chin. Phys. B 26 125202

    [15]

    Li C K, Seguin F H, Frenje J A, Petrasso R D, Amendt P A, Town R P J, Landen O L, Rygg J R, Betti R, Knauer J P, Meyerhofer D D, Soures J M, Back C A, Kilkenny J D, Nikroo A 2009 Phys. Rev. Lett. 102 205001

    [16]

    Zel'dovich Ya B, Raizer Yu P 2002 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Mineola, NY: Dover) p522

    [17]

    Schneider M B, Hinkel D E, Landen O L, Froula D H, Heeter R F, Langdon A B, May M J, McDonald J, Ross J S, Singh M S, Suter L J, Widmann K, Young B K, Baldis H A, Constantin C, Bahr R, Glebov V Y, Seka W, Stoeckl C 2006 Phys. Plasmas 13 112701

    [18]

    Li C K, Seguin F H, Frenje J A, Rosenberg M J, Rinderknecht H G, Zylstra A B, Petrasso R D, Amendt P A, Landen O L, MacKinnon A J, Town R P J, Wilks S C, Betti R, Meyerhofer D D, Soures J M, Hund J, Kilkenny J D, Nikroo A 2012 Phys. Rev. Lett. 108 025001

    [19]

    Li C K, Ryutov D D, Hu S X, Rosenberg M J, Zylstra A B, Se'guin F H, Frenje J A, Casey D T, Johnson M G, Manuel M J E, Rinderknecht H G, Petrasso R D, Amendt P A, Park H S, Remington B A, Wilks S C, Betti R, Froula D H, Knauer J P, Meyerhofer D D, Drake R P, Kuranz C C, Young R, Koenig M 2013 Phys. Rev. Lett. 111 235003

  • [1]

    Atzeni S, Meyer-ter-Vehn J 2004 The Physics of Inertial Fusion (Oxford: Clarendon Press) p131

    [2]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [3]

    Glenzer S H, Alley W E, Estabrook K G, de Groot J S, Haines M G, Hammer J H, Jadaud J P, Macgowan B J, Moody J D, Rozmus W, Suter L J, Weiland T L, Williams E A 1999 Phys. Plasmas 6 2117

    [4]

    Foster J M, Wilde B H, Rosen P A, Perry T S, Fell M, Edwards M J, Lasinski B F, Turner R E, Gittings M L 2002 Phys. Plasmas 9 2251

    [5]

    Li C K, Seguin F H, Frenje J A, Rosenberg M, Petrasso R D, Amendt P A, Koch J A, Landen O L, Park H S, Robey H F, Town R P J, Casner A, Philippe F, Betti R, Knauer J P, Meyerhofer D D, Back C A, Kilkenny J D, Nikroo A 2010 Science 327 1231

    [6]

    Budil K S, Perry T S, Bell P M 1996 Rev. Sci. Instrum. 67 485

    [7]

    Dewald E L, Rosen M, Glenzer S H, Suter L J, Girard F, Jadaud J P, Schein J, Constantin C, Wagon F, Huser G, Neumayer P, Landen O L 2008 Phys. Plasmas 15 072706

    [8]

    Rochau G A, Bailey J E, Chandler G A, Nash T J, Nielsen D S, Dunham G S, Garcia O F, Joseph N R, Keister J W, Madlener M J, Morgan D V, Moy K J, Wu M 2006 Rev. Sci. Instrum 77 10E323

    [9]

    Riodel M S, Dejus R J 2004 AIP Conference Proceedings 705 784

    [10]

    Li H, Song T M, Yang J M, Zhu T, Lin Z W, Zheng J H, Kuang L Y, Zhang H Y, Yu R Z, Liu S Y, Jiang S E, Ding Y K, Hu G Y, Zhao B, Zheng J 2015 Phys. Plasmas 22 072705

    [11]

    Nilson P M, Willingale L, Kaluza M C, Kamperidis C, Minardi S, Wei M S, Fernandes P, Notley M 2006 Phys. Rev. Lett. 97 255001

    [12]

    Zhong J Y, Li Y T, Wang X G, Wang J Q, Dong Q L, Xiao C J, Wang S J, Liu X, Zhang L, An L, Wang F L, Zhu J Q, Gu Y A, He X T, Zhao G, Zhang J 2010 Nat. Phys. 6 984

    [13]

    Ma Y Z, Xu B B, Ge Z Y, Gan L F, Meng L, Wang S W, Kawata S 2018 Phys. Plasmas 25 042706

    [14]

    Guo H Y, Wang L F, Ye W H, Wu J F, Zhang W Y 2017 Chin. Phys. B 26 125202

    [15]

    Li C K, Seguin F H, Frenje J A, Petrasso R D, Amendt P A, Town R P J, Landen O L, Rygg J R, Betti R, Knauer J P, Meyerhofer D D, Soures J M, Back C A, Kilkenny J D, Nikroo A 2009 Phys. Rev. Lett. 102 205001

    [16]

    Zel'dovich Ya B, Raizer Yu P 2002 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Mineola, NY: Dover) p522

    [17]

    Schneider M B, Hinkel D E, Landen O L, Froula D H, Heeter R F, Langdon A B, May M J, McDonald J, Ross J S, Singh M S, Suter L J, Widmann K, Young B K, Baldis H A, Constantin C, Bahr R, Glebov V Y, Seka W, Stoeckl C 2006 Phys. Plasmas 13 112701

    [18]

    Li C K, Seguin F H, Frenje J A, Rosenberg M J, Rinderknecht H G, Zylstra A B, Petrasso R D, Amendt P A, Landen O L, MacKinnon A J, Town R P J, Wilks S C, Betti R, Meyerhofer D D, Soures J M, Hund J, Kilkenny J D, Nikroo A 2012 Phys. Rev. Lett. 108 025001

    [19]

    Li C K, Ryutov D D, Hu S X, Rosenberg M J, Zylstra A B, Se'guin F H, Frenje J A, Casey D T, Johnson M G, Manuel M J E, Rinderknecht H G, Petrasso R D, Amendt P A, Park H S, Remington B A, Wilks S C, Betti R, Froula D H, Knauer J P, Meyerhofer D D, Drake R P, Kuranz C C, Young R, Koenig M 2013 Phys. Rev. Lett. 111 235003

  • [1] 李文秋, 唐彦娜, 刘雅琳, 马维聪, 王刚. 各向同性等离子体覆盖金属天线辐射增强现象. 物理学报, 2023, 72(13): 135202. doi: 10.7498/aps.72.20230101
    [2] 陈泽煜, 彭玉彬, 王瑞, 贺永宁, 崔万照. 微波谐振腔低气压放电等离子体反应动力学过程. 物理学报, 2022, 71(24): 240702. doi: 10.7498/aps.71.20221385
    [3] 赵雯琪, 张岱, 崔明慧, 杜颖, 张树宇, 区琼荣. 等离子体对石墨烯的功能化改性. 物理学报, 2021, 70(9): 095208. doi: 10.7498/aps.70.20202078
    [4] 丁明松, 傅杨奥骁, 高铁锁, 董维中, 江涛, 刘庆宗. 高超声速磁流体力学控制霍尔效应影响. 物理学报, 2020, 69(21): 214703. doi: 10.7498/aps.69.20200630
    [5] 杨春林. 等离子体中散斑光场的传输特性. 物理学报, 2018, 67(8): 085201. doi: 10.7498/aps.67.20171795
    [6] 刘帅, 黄易之, 郭海山, 张永鹏, 杨兰均. 平行轨道加速器等离子体动力学特性研究. 物理学报, 2018, 67(6): 065201. doi: 10.7498/aps.67.20172403
    [7] 韩波, 王菲鹿, 梁贵云, 赵刚. 实验室光致电离等离子体中激发过程的研究. 物理学报, 2016, 65(11): 110503. doi: 10.7498/aps.65.110503
    [8] 张璐, 董云松, 景龙飞, 林雉伟, 谭秀兰, 况龙钰, 黎航, 尚万里, 张文海, 李志超, 詹夏宇, 袁光辉, 李海, 江少恩, 杨家敏, 丁永坤. 低密度泡沫金提升黑腔腔壁再发射率的实验研究. 物理学报, 2016, 65(1): 015202. doi: 10.7498/aps.65.015202
    [9] 王峰, 彭晓世, 杨冬, 李志超, 徐涛, 魏惠月, 刘慎业. 基于神光Ⅲ原型的背向散射实验技术研究. 物理学报, 2013, 62(17): 175202. doi: 10.7498/aps.62.175202
    [10] 刘惠平, 邹秀, 邹滨雁, 邱明辉. 电负性等离子体磁鞘的玻姆判据. 物理学报, 2012, 61(3): 035201. doi: 10.7498/aps.61.035201
    [11] 孟 亮, 张 杰, 朱晓东, 温晓辉, 丁 芳. 热丝辅助双偏压氢等离子体制造金刚石锥状表面研究. 物理学报, 2008, 57(4): 2334-2339. doi: 10.7498/aps.57.2334
    [12] 张秋菊, 武慧春, 王兴海, 盛政明, 张 杰. 超短激光脉冲在等离子体中的分裂以及类孤子结构的形成. 物理学报, 2007, 56(12): 7106-7113. doi: 10.7498/aps.56.7106
    [13] 田杨萌, 王彩霞, 姜 明, 程新路, 杨向东. 惰性物质等离子体物态方程研究. 物理学报, 2007, 56(10): 5698-5703. doi: 10.7498/aps.56.5698
    [14] 王 彬, 谢文楷. 等离子体加载耦合腔慢波结构色散分析. 物理学报, 2007, 56(12): 7138-7146. doi: 10.7498/aps.56.7138
    [15] 张 丽, 李向东, 蒋新革. 等离子体效应对类氦氖Kα线系电偶极辐射的影响. 物理学报, 2006, 55(9): 4501-4505. doi: 10.7498/aps.55.4501
    [16] 谢鸿全, 刘濮鲲. 磁化等离子体填充螺旋线的色散方程. 物理学报, 2006, 55(5): 2397-2402. doi: 10.7498/aps.55.2397
    [17] 黄勤超, 罗家融, 王华忠, 李 翀. EAST装置等离子体放电位形快速识别研究. 物理学报, 2006, 55(1): 281-286. doi: 10.7498/aps.55.281
    [18] 刘少斌, 朱传喜, 袁乃昌. 等离子体光子晶体的FDTD分析. 物理学报, 2005, 54(6): 2804-2808. doi: 10.7498/aps.54.2804
    [19] 张秋菊, 盛政明, 张 杰. 周期量级超短激光脉冲在近临界密度等离子体中形成的光孤子. 物理学报, 2004, 53(3): 798-802. doi: 10.7498/aps.53.798
    [20] 傅喜泉, 刘承宜, 郭弘. 等离子体中X射线激光传输与电子密度诊断的理论及数值比较. 物理学报, 2002, 51(6): 1326-1331. doi: 10.7498/aps.51.1326
计量
  • 文章访问数:  4841
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-19
  • 修回日期:  2018-10-16
  • 刊出日期:  2018-12-05

/

返回文章
返回